Proof of Sylow: Let G be a Finite Group, H and K Subgroups of G

  • Thread starter Thread starter moont14263
  • Start date Start date
  • Tags Tags
    Group
moont14263
Messages
40
Reaction score
0
Let G be a finite group, H and K subgroups of G such that G=HK. Show that there exists a p-Sylow subgroup P of G such that P=(P∩H)(P∩K).

I found this proof and it is clear http://math.stackexchange.com/questions/42495/sylow-subgroups but I do not understand step 3 which is "It is clear in this situation that P=(P∩H)(P∩K)". Help.
 
Last edited:
Physics news on Phys.org
moont14263 said:
Let G be a finite group, H and K subgroups of G such that G=HK. Show that there exists a p-Sylow subgroup P of G such that P=(P∩H)(P∩K).

I found this proof and it is clear http://math.stackexchange.com/questions/42495/sylow-subgroups but I do not understand step 3 which is "It is clear in this situation that P=(P∩H)(P∩K)". Help.

+

Well, after part (3) in the stackexchange there's a further poster who also had a problem with this step, and I think it isn't THAT clear, as the other guy wrote, that P = (P/\H)(P/\K)...
The same question as that further poster asked came to my mind: is normality something we can do without?

It'd be interesting to know where did you find this problem.

DonAntonio
 
It is in Finite Group Theory I. Martin Isaacs page 18
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top