You're making it more complicated than it needs to be. I'm not even sure what you're doing, but you're getting the right result. Now you just need to use that the states are normalized.
This is the easy way to get the result you've got already:
\langle \psi_j | \psi_i \rangle \langle \psi_i | \psi_j \rangle=|\langle\psi_i|\psi_j\rangle|^2\leq \big\||\psi_i\rangle\big\|^2\big\||\psi_j\rangle\big\|^2=1
You will of course also have to use what you know about the p
i.
I posted a statement and proof of the Cauchy-Schwarz inequality in the Science Advisor forum some time ago. You probably don't need it, but since it's a related topic, and since I have only posted it in a restricted forum before, I'm reposting it here.
Theorem:
If x and y are vectors in an inner product space X over \mathbb C[/itex], then<br />
<br />
<div style="margin-left: 20px">|\langle x,y\rangle| \leq \|x\|\|y\|​</div><br />
where the norm is the standard norm on an inner product space.<br />
<br />
<b>Proof:</b><br />
<br />
Let t be an arbitrary complex number.<br />
<br />
<div style="margin-left: 20px">0 \leq \langle x+ty,x+ty\rangle=\|x\|^2+t\langle x,y\rangle+t^*\langle y,x\rangle+|t|^2\|y\|^2​</div><br />
<div style="margin-left: 20px">=\|x\|^2+2\operatorname{Re}(t\langle x,y\rangle)+|t|^2\|y\|^2​</div><br />
The inequality is obviously satisfied when the real part of t<x,y> is non-negative, so we can only learn something interesting when it's negative. Let's choose Arg t so that it is.<br />
<br />
<div style="margin-left: 20px">=\|x\|^2-2|t||\langle x,y\rangle|+|t|^2\|y\|^2​</div><br />
Now let's choose |t| so that it minimizes the sum of the last two terms. (This should give us the most interesting result).<br />
<br />
<div style="margin-left: 20px">s=|t|,\ A=\|y\|^2,\ B=2|\langle x,y\rangle|​</div><br />
<div style="margin-left: 20px">f(s)=As^2-Bs​</div><br />
<div style="margin-left: 20px">f&#039;(s)=2As-B=0\ \Rightarrow\ s=\frac{B}{2A} = \frac{|\langle x,y\rangle|}{\|y\|^2}​</div><br />
<div style="margin-left: 20px">f&#039;&#039;(s)=2A&gt;0​</div><br />
Continuing with this value of |t|...<br />
<br />
<div style="margin-left: 20px">=\|x\|^2-2\frac{|\langle x,y\rangle|}{\|y\|^2}|\langle x,y\rangle|+\frac{|\langle x,y\rangle|^2}{\|y\|^4}\|y\|^2​</div><br />
<div style="margin-left: 20px">=\|x\|^2-\frac{|\langle x,y\rangle|^2}{\|y\|^2}​</div>