madachi
- 29
- 0
Homework Statement
Let f(x,y,z), g(x,y,z), h(x,y,z) be any C^2 scalar functions. Using the standard identities of vector analysis (provided in section 2 below), prove that
\nabla \cdot ( f \nabla g \times \nabla h ) = \nabla f \cdot ( \nabla g \times \nabla h)
Homework Equations
Note: The identities below require f,g,F,G to be suitable differentiable, either order C^1 or C^2.
1. \nabla (f+g) = \nabla f + \nabla g
2. \nabla (\lambda f) = \lambda \nabla f, where \lambda is a constant
3. \nabla (fg) = f \nabla g + g \nabla f
4. \nabla (\frac{f}{g}) = \frac{g \nabla f - f \nabla g}{g^2}
5. \nabla \cdot (F+G) = \nabla \cdot F + \nabla \cdot G
6. \nabla \times (F+G) = \nabla \times F + \nabla \times G
7. \nabla \cdot (fF) = f \nabla \cdot F + F \cdot \nabla f
8. \nabla \cdot (F \times G) = G \cdot (\nabla \times F ) - F \cdot (\nabla \times G)
9. \nabla \cdot (\nabla \times F) = 0
10. \nabla \times (fF) = f \nabla \times F + \nabla f \times F
11. \nabla \times (\nabla f) = 0
12. {\nabla}^2 (fg) = f{\nabla}^2 g + g{\nabla}^2 f + 2 \nabla f \cdot \nabla g
13. \nabla \cdot (\nabla f \times \nabla g) = 0
14. \nabla (f \nabla g - g \nabla f) = f {\nabla}^2 g - g {\nabla}^2 f
The Attempt at a Solution
Using identity 8,
\nabla \cdot ( f \nabla g \times \nabla h ) = \nabla h \cdot (\nabla \times (f \nabla g)) - (f \nabla g) \cdot (\nabla \times (\nabla h))
One of the terms on RHS, \nabla \times (\nabla h) = 0 by identity 11.
So the equation reduces to
\nabla \cdot ( f \nabla g \times \nabla h ) = \nabla h \cdot (\nabla \times (f \nabla g))
I'm stuck here. There is no identity that I can use to further simplify this to the one required. (from what I can see, or am I wrong?) How do we proceed?
Thanks!