Proof: Solve Rational equation for interval

John O' Meara
Messages
325
Reaction score
0
Prove that if c and d are positive, then the equation \frac{c}{x-2} + \frac{d}{x-4} = 0 has at least one solution in the interval (2,4).
I try to use the following theorem: If f is continuous on [a,b] and if f(a) and f(b) are nonzero and have opposite signs, then there is at least one solution of the equation f(x) = 0 in the interval (a,b).
As the theorem requires f to be continuous on the closed interval [2,4], the open interval (2,4) is what is given, indeed there is a discontinuity at x=2 and at x =4. The equation can be rewritten as \frac{x-2}{x-4} + \frac{c}{d}=0 x not equal to 2. I do not know of any other theorem to use. Can someone point me in the correct direction, please. Thank you.
 
Mathematics news on Phys.org
Look at the limits as x --> 2+ and x --> 4-. What does that tell you?
 
\lim_{x\rightarrow 2^+} \mbox{ \lim_{x \rightarrow4^-} \mbox{ are } -\infty \mbox{ and } +\infty I think or maybe the other way round, I have to check their signs using test points. It tells me that f(a)= -infinity and f(b)=+infinity
 
So can you get f to have opposite signs on the interval?
 
Yes, I can get f to have opposite signs on the interval.And the conclusion of theorem follows
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top