jack action
					
				
			
			
	
	
	
		
			
				
					
					
					
					
						
		
	
	
			
		
		
			
			
				
							 Science Advisor
						
					
					
					
					
						
					
					
					
					
					
										
					
					
				
			
- 3,520
- 9,817
Case 1:
Statement:
$$x(x-1)=0$$
Solution:
$$x= 0\ \ \ \ \text{or}\ \ \ \ x=1$$
Case 2:
Statements:
Statements:
Statements:
There are no solutions because ##x## cannot be equal to ##0## and ##1## at the same time.
Case 5:
Statements:
$$x= 0\ \ \ \ \text{or}\ \ \ \ x=1$$
You started with case 3 and somehow introduced ##x=0## along the way transforming it into case 4.
Note also that rewritting ##x(x-1) = 0## into ##x^2=x## doesn't change the fact that both ##(0)^2=(0)## and ##(1)^2=(1)## satisfy the equation.
				
			Statement:
$$x(x-1)=0$$
Solution:
$$x= 0\ \ \ \ \text{or}\ \ \ \ x=1$$
Case 2:
Statements:
$$x(x-1)=0$$
and
$$x=0$$
Solution:and
$$x=0$$
$$x=0$$
Case 3:Statements:
$$x(x-1)=0$$
and
$$x=1$$
Solution:and
$$x=1$$
$$x=1$$
Case 4:Statements:
$$x(x-1)=0$$
and
$$x=1$$
and
$$x=0$$
Solution:and
$$x=1$$
and
$$x=0$$
There are no solutions because ##x## cannot be equal to ##0## and ##1## at the same time.
Case 5:
Statements:
$$x(x-1)=0$$
and either
$$x=1$$
or
$$x=0$$
Solution:and either
$$x=1$$
or
$$x=0$$
$$x= 0\ \ \ \ \text{or}\ \ \ \ x=1$$
You started with case 3 and somehow introduced ##x=0## along the way transforming it into case 4.
Note also that rewritting ##x(x-1) = 0## into ##x^2=x## doesn't change the fact that both ##(0)^2=(0)## and ##(1)^2=(1)## satisfy the equation.

 
 
		 
 
		 
 
		