hob
- 6
- 0
To prove:
F \overline{} \mu\nu = \nabla\overline{} \muA \overline{} \nu - \nabla\overline{} \nuA \overline{} \mu
is invariant under the gauge transformation:
A \overline{} \mu \rightarrow A \overline{} \mu + \nabla\overline{} \mu\LambdaI end up with:
F \overline{} \mu\nu = F \overline{} \mu\nu + [\nabla\overline{} \mu,\nabla\overline{} \nu]\Lambda
Which I guess is invariant provided \nabla\overline{} \mu & \nabla\overline{} \nu commute?
Do they commute? and if so why?
Many thanks.
F \overline{} \mu\nu = \nabla\overline{} \muA \overline{} \nu - \nabla\overline{} \nuA \overline{} \mu
is invariant under the gauge transformation:
A \overline{} \mu \rightarrow A \overline{} \mu + \nabla\overline{} \mu\LambdaI end up with:
F \overline{} \mu\nu = F \overline{} \mu\nu + [\nabla\overline{} \mu,\nabla\overline{} \nu]\Lambda
Which I guess is invariant provided \nabla\overline{} \mu & \nabla\overline{} \nu commute?
Do they commute? and if so why?
Many thanks.