MHB Proof that the integral is independent from the path from A to B

Click For Summary
The discussion centers on understanding the proof that the line integral of a vector field $\overrightarrow{F}$ is independent of the path between two points A and B if $\overrightarrow{F}$ is the gradient of a differentiable function $f$. The proof demonstrates that the integral can be expressed as $f(B) - f(A)$ using the relationship between the vector field and the function's partial derivatives. Participants clarify that the components of $\overrightarrow{F}$ correspond to the partial derivatives of $f$, and they explain the reasoning behind focusing on one component at a time during the proof. The notation and conceptual connections are discussed to ensure clarity in understanding how the integral relates to the function's values at the endpoints. Overall, the conversation emphasizes the importance of recognizing the relationship between vector fields and potential functions in the context of path independence.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I am facing some troubles understanding the proof of the following theorem.

Let $\overrightarrow{F}$ be a vector field, $\overrightarrow{F}=M\hat{\imath}+N\hat{\jmath}+P\hat{k}$, where $M,N,P$:continuous at a region $D$ ($M,N,P \in C^0(D)$) . Then a suficient and necesary condition so that the integral $\int_A^B{\overrightarrow{F}d \overrightarrow{R}}$ is independent from the path from $A$ to $B$ in $D$ is that there is a differentiable function $f$ such that $\overrightarrow{F}=\nabla f= \hat{\imath} \frac{\partial{f}}{\partial{x}}+\hat{\jmath} \frac{\partial{f}}{\partial{y}}+\hat{k} \frac{\partial{f}}{\partial{z}}$ in $D$.
In this case the value of the integral is given by:
$$\int_A^B \overrightarrow{F}d \overrightarrow{R}=f(B)-f(A)$$

The proof that I am given is the following:
View attachment 2552
$$\overrightarrow{R}(t)=(x(t), y(t), z(t)), t_1 \leq t \leq t_2$$

$\displaystyle{f(x(t), y(t), z(t))}$

$\displaystyle{\frac{df}{dt}=\frac{\partial{f}}{\partial{x}} \frac{dx}{dt}+\frac{\partial{f}}{\partial{y}} \frac{dy}{dt}+ \frac{\partial{f}}{\partial{z}} \frac{dz}{dt}}$

$\displaystyle{\Rightarrow \frac{df}{dt}= \nabla f \cdot \frac{d \overrightarrow{R}}{dt}}$

$\displaystyle{\overrightarrow{F} \cdot d \overrightarrow{R}=\nabla f \cdot \frac{d \overrightarrow{R}}{dt} dt=\frac{df}{dt}dt=\overrightarrow{F} \cdot d \overrightarrow{R}}$

$\displaystyle{\int_A^B \overrightarrow{F} d \overrightarrow{R}=\int_{t_1}^{t_2} \frac{df}{dt} dt=f(B)-f(A)}$ $\ \ \ \ (*)$
$\overrightarrow{F}(x,y,z)=\hat{\imath} M(x,y,z)+\hat{\jmath} N(x,y,z)+\hat{k} P(x,y,z)$

We will show that: $$\frac{\partial{f}}{\partial{x}}=M, \frac{\partial{f}}{\partial{y}}=N, \frac{\partial{f}}{\partial{z}}=P$$

View attachment 2553

$$x=x'+t \cdot h, y=y', z=z', 0 \leq t \leq 1$$
$$\frac{f(x'+h, y', z')-f(x', y', z')}{h}=\frac{1}{h} \int_B^{B'} \overrightarrow{F} d \overrightarrow{R}=\frac{1}{h} \int_0^1 M(x'+t \cdot h, y', z') \cdot h dt= \int_0^1 M(x'+t \cdot h, y', z') dt$$
$$h \rightarrow 0$$
$$\frac{\partial{f}}{\partial{x}}=M(x,y,z)$$

In a similar way can show that
$$\frac{\partial{f}}{\partial{y}}=N(x,y,z), \frac{\partial{f}}{\partial{z}}=P(x,y,z)$$

__________________________________________________________________________

At the beginning (till the point $(*)$ ) we suppose that there is a differentiable function $f$ such that $\overrightarrow{F}=\nabla f$ and we show that the integral $\int_A^B \overrightarrow{F} d \overrightarrow{R}$ is equal to $f(B)-f(A)$. Or have I understood it wrong? (Wondering)

Then I haven't understood the proof from the point
"$\overrightarrow{F}(x,y,z)=\hat{\imath} M(x,y,z)+\hat{\jmath} N(x,y,z)+\hat{k} P(x,y,z)$
We will show that: $\frac{\partial{f}}{\partial{x}}=M, \frac{\partial{f}}{\partial{y}}=N, \frac{\partial{f}}{\partial{z}}=P$ $ \dots \dots \dots "$ (Worried)

Could you explain it to me? (Wondering)
 

Attachments

  • th.png
    th.png
    2.5 KB · Views: 116
  • thh.png
    thh.png
    3.8 KB · Views: 113
Last edited by a moderator:
Physics news on Phys.org
Hey! (Blush)

mathmari said:
At the beginning (till the point $(*)$ ) we suppose that there is a differentiable function $f$ such that $\overrightarrow{F}=\nabla f$ and we show that the integral $\int_A^B \overrightarrow{F} d \overrightarrow{R}$ is equal to $f(B)-f(A)$. Or have I understood it wrong? (Wondering)

You've understood perfectly! (Happy)

Then I haven't understood the proof from the point
"$\overrightarrow{F}(x,y,z)=\hat{\imath} M(x,y,z)+\hat{\jmath} N(x,y,z)+\hat{k} P(x,y,z)$
We will show that: $\frac{\partial{f}}{\partial{x}}=M, \frac{\partial{f}}{\partial{y}}=N, \frac{\partial{f}}{\partial{z}}=P$ $ \dots \dots \dots "$ (Worried)

Could you explain it to me? (Wondering)

Apparently they want to show that the components of $\overrightarrow{F}$ match the partial derivatives of $f$.
But to be fair, I don't understand why they're being so difficult about it, because I believe this is obvious from the definition of $f$. (Doh)

Apparently they take an infinitesimal step in the x direction using $f$, convert it to the corresponding infinitesimal path integral with $\overrightarrow{F}$, and then convert it to the M component of $\overrightarrow{F}$, showing these are the same. (Nerd)
 
I like Serena said:
Hey! (Blush)

You've understood perfectly! (Happy)

$\displaystyle{\int_A^B \overrightarrow{F} d \overrightarrow{R}=\int_{t_1}^{t_2} \frac{df}{dt} dt=f(B)-f(A)}$

Shouldn't it be $\displaystyle{\int_{t_1}^{t_2} \frac{df}{dt} dt=f(t_2)-f(t_1)}$

How can we get $f(B)-f(A)$ ? (Wondering)
I like Serena said:
Apparently they want to show that the components of $\overrightarrow{F}$ match the partial derivatives of $f$.
But to be fair, I don't understand why they're being so difficult about it, because I believe this is obvious from the definition of $f$. (Doh)

Apparently they take an infinitesimal step in the x direction using $f$, convert it to the corresponding infinitesimal path integral with $\overrightarrow{F}$, and then convert it to the M component of $\overrightarrow{F}$, showing these are the same. (Nerd)
Now we know that $\displaystyle{\int_B^{B'}\overrightarrow{F} d \overrightarrow{R}=f(B')-f(B)=f(x'+h, y', z')-f(x', y', z')}$$$\frac{f(x'+h, y', z')-f(x', y', z')}{h}=\frac{1}{h} \int_B^{B'} \overrightarrow{F} d \overrightarrow{R}$$
Why is this equal to $$\frac{1}{h} \int_0^1 M(x'+t \cdot h, y', z') \cdot h dt$$
where there is only $M$, and not $N$ or $P$ ? (Wondering)
 
mathmari said:
$\displaystyle{\int_A^B \overrightarrow{F} d \overrightarrow{R}=\int_{t_1}^{t_2} \frac{df}{dt} dt=f(B)-f(A)}$

Shouldn't it be $\displaystyle{\int_{t_1}^{t_2} \frac{df}{dt} dt=f(t_2)-f(t_1)}$

How can we get $f(B)-f(A)$ ? (Wondering)

It's the same thing.
The notation is a bit sloppy.
When $f(t)$ is written, it should really be $f(\overrightarrow R(t))$.

So $f(t_1)$ is really $f(\overrightarrow R(t_1)) = f(A)$.
Now we know that $\displaystyle{\int_B^{B'}\overrightarrow{F} d \overrightarrow{R}=f(B')-f(B)=f(x'+h, y', z')-f(x', y', z')}$

$$\frac{f(x'+h, y', z')-f(x', y', z')}{h}=\frac{1}{h} \int_B^{B'} \overrightarrow{F} d \overrightarrow{R}$$
Why is this equal to $$\frac{1}{h} \int_0^1 M(x'+t \cdot h, y', z') \cdot h dt$$
where there is only $M$, and not $N$ or $P$ ? (Wondering)

The point $B'$ has been selected in such a way that it has the same y and z coordinates as $B$.
That is why only the x coordinate is changed by a small amount.
So $d\overrightarrow R$ is a vector aligned with $\hat \imath$ at every point of the path from $B$ to $B'$.
As a result the dot product with $\overrightarrow F$ shows only $M$. (Mmm)
 
I like Serena said:
It's the same thing.
The notation is a bit sloppy.
When $f(t)$ is written, it should really be $f(\overrightarrow R(t))$.

So $f(t_1)$ is really $f(\overrightarrow R(t_1)) = f(A)$.

The point $B'$ has been selected in such a way that it has the same y and z coordinates as $B$.
That is why only the x coordinate is changed by a small amount.
So $d\overrightarrow R$ is a vector aligned with $\hat \imath$ at every point of the path from $B$ to $B'$.
As a result the dot product with $\overrightarrow F$ shows only $M$. (Mmm)

Ahaa! Ok! I got it! Thank you for explaining it to me! (Handshake) (Smile)