Proof that there exists a smallest positive linear combination?

Aziza
Messages
189
Reaction score
1
A theorem from number theory states that, if a and b are nonzero integers, then there exists a smallest positive linear combination of a and b.

This is my proof:

Let S be a set such that S = {w\inNatural numbers : w=am+bn} , where a and b are positive integers, m and n are any integers, and w is by definition a linear combination of a and b.
Suppose S is nonempty. Then S is a subset of the natural numbers. Then by the Well Ordering Principle, S has a smallest (positive) element. Thus there exists a smallest positive linear combination of a and b.


Is this correct? Or am I missing something? My professor said that fastest way to prove this is by contradiction, but it seems to me that just directly proving by the well ordering principle is faster?
 
Physics news on Phys.org
You really don't have to assume that S is non-empty, as you can easily prove this fact.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top