Ene Dene
- 47
- 0
Proove that position x and momentum p operators are hermitian.
Now, more generaly the proof that operator of some opservable must be hermitian would go something like this:
A\psi_{n}=a_{n}\psi_{n}
Where A operator of some opservable, \psi_{n} eigenfunction of that operator and a_{n} are the eingenvalues of that operator, which are real because that is what we messure.
So:
<\psi_{n}|A|\psi_{n}>=<\psi_{n}|a_{n}|\psi_{n}>=<a_{n}\psi_{n}|\psi_{n}>=<\psi_{n}|a_{n}\psi_{n}>
Since a_{n} is real. And then:
<A^+\psi_{n}|\psi_{n}>=<\psi_{n}|A\psi_{n}> => <A\psi_{n}|\psi_{n}>=<\psi_{n}|A\psi_{n}> => A^+=A
But how do I apply this to concrete problem, for example on operator p_{x}=-ih\frac{d}{dx} (I used h for h/2Pi). Would this be a good analogy:
-ih\frac{d}{dx}u(x)=p_{x}u(x)
u(x)=Cexp(\frac{i}{h}(p_{x}x))
<Cexp(\frac{i}{h}(p_{x}x))|-ih\frac{d}{dx}|Cexp(\frac{i}{h}(p_{x}x))>=<Cexp(\frac{i}{h}(p_{x}x))|p_{x}|Cexp(\frac{i}{h}(p_{x}x))>=<p_{x}^*Cexp(\frac{i}{h}(p_{x}x))|Cexp(\frac{i}{h}(p_{x}x))>=
=<Cexp(\frac{i}{h}(p_{x}x))|p_{x}Cexp(\frac{i}{h}(p_{x}x))>
But since p_{x} is real:
<-ih\frac{d}{dx}(Cexp(\frac{i}{h}(p_{x}x)))|Cexp(\frac{i}{h}(p_{x}x))>=<Cexp(\frac{i}{h}(p_{x}x))|-ih\frac{d}{dx}(Cexp(\frac{i}{h}(p_{x}x)))>
Thus operator of p is hermitian.
Is this correct?
Now, more generaly the proof that operator of some opservable must be hermitian would go something like this:
A\psi_{n}=a_{n}\psi_{n}
Where A operator of some opservable, \psi_{n} eigenfunction of that operator and a_{n} are the eingenvalues of that operator, which are real because that is what we messure.
So:
<\psi_{n}|A|\psi_{n}>=<\psi_{n}|a_{n}|\psi_{n}>=<a_{n}\psi_{n}|\psi_{n}>=<\psi_{n}|a_{n}\psi_{n}>
Since a_{n} is real. And then:
<A^+\psi_{n}|\psi_{n}>=<\psi_{n}|A\psi_{n}> => <A\psi_{n}|\psi_{n}>=<\psi_{n}|A\psi_{n}> => A^+=A
But how do I apply this to concrete problem, for example on operator p_{x}=-ih\frac{d}{dx} (I used h for h/2Pi). Would this be a good analogy:
-ih\frac{d}{dx}u(x)=p_{x}u(x)
u(x)=Cexp(\frac{i}{h}(p_{x}x))
<Cexp(\frac{i}{h}(p_{x}x))|-ih\frac{d}{dx}|Cexp(\frac{i}{h}(p_{x}x))>=<Cexp(\frac{i}{h}(p_{x}x))|p_{x}|Cexp(\frac{i}{h}(p_{x}x))>=<p_{x}^*Cexp(\frac{i}{h}(p_{x}x))|Cexp(\frac{i}{h}(p_{x}x))>=
=<Cexp(\frac{i}{h}(p_{x}x))|p_{x}Cexp(\frac{i}{h}(p_{x}x))>
But since p_{x} is real:
<-ih\frac{d}{dx}(Cexp(\frac{i}{h}(p_{x}x)))|Cexp(\frac{i}{h}(p_{x}x))>=<Cexp(\frac{i}{h}(p_{x}x))|-ih\frac{d}{dx}(Cexp(\frac{i}{h}(p_{x}x)))>
Thus operator of p is hermitian.
Is this correct?