Emil_M
- 45
- 2
Homework Statement
Let \mathcal{E} be a trace-preserving quantum operation. Let \rho and \sigma
be density operators. Show that <br /> D(\mathcal{E}(\rho), \mathcal{E}(\sigma)) \leq D(\rho,\sigma)<br />
Homework Equations
D(\rho, \sigma) := \frac{1}{2} Tr \lvert \rho-\sigma\rvert
We can write \rho-\sigma=Q-S where Q and S are positive matrices with orthogonal support. We choose a projector P, such that <br /> D(\mathcal{E}(\rho), \mathcal{E}(\sigma))=Tr(P(\mathcal{E}(\rho)-\mathcal{E}(\sigma)))<br />
The Attempt at a Solution
<br /> \begin{align*}<br /> D(\rho, \sigma) &=\frac{1}{2} Tr \lvert \rho-\sigma\rvert \\<br /> &=\frac{1}{2} Tr \lvert Q-S\rvert \\<br /> &=\frac{1}{2}(Tr(Q)+Tr(S))\\<br /> &=\frac{1}{2}(Tr(\mathcal{E}(Q)+\mathcal{E}(S))\\<br /> &=Tr(\mathcal{E}(Q))\;\; \Big(\text{since } Tr(Q)=Tr(S) \Big) \\<br /> &\geq Tr(P\mathcal{E}(Q))<br /> \end{align*}<br />
Why is the last step valid? Why can a projector never increase the trace?
Thanks for you help!