- #1
UOAMCBURGER
- 31
- 1
Homework Statement
Use mathematical induction to prove that (8n − 7n − 1) is divisible by 49 for any n ∈ N.
Correction by mentor for better readability: ##49\,|\,(8^n-7n-1)##
The Attempt at a Solution
We can see that the base case is satisfied here:
n = 1,
8^1-7*1-1 = 0 and 49 | 0 is true since 49 | 0 => 49*a = 0 where a is an integer, here a = 0.
therefore base case is proven
Inductive assumption is : Assume true : 49 | (8k -7k - 1) for n=k
Now have to show that 49 | (8k+1 - 7k - 8)
So we can see that 8k+1 - 7k - 8 = 8*8k -7k -1, but I am unsure of where to go from here.
Any help will be appreciated.
Last edited by a moderator: