Felafel
- 170
- 0
Homework Statement
Let ##f:\mathbb{R}\to \mathbb{R}## a monotone function sucht that
## \displaystyle \lim_{x \to +\infty} \frac{f(2x)}{f(x)}=1##
show that for all c>0, we have
##\displaystyle \lim_{x \to +\infty} \frac{f(cx)}{f(x)}=1##
I think I'm almost there. Does it look okay to you? also, is it valid for 0<c<1 or just for c>1?
thank you very much
The Attempt at a Solution
For the definition of limit to infinity:
##\forall \epsilon >0## ##\exists S>0## ##:##
##|f(x)-l|<\epsilon## ##\forall x>S##
##\displaystyle \lim_{x \to +\infty} \frac{f(2x)}{f(x)}=1## ##\Rightarrow## ##|\frac{f(2x)}{f(x)}-1|<\epsilon$ $\forall x>S##
which means
##f(x)(-\epsilon+1)<f(2x)<(\epsilon+1)f(x)## (I see it's monotonically decreasing, and so 1 is the infimum)
But if ##\forall \epsilon>0## i get ##-\epsilon f(x)+f(x)<f(2x)<\epsilon f(x)+f(x)##
Being ##\epsilon \to 0## ##\Rightarrow## ##|f(2x)-f(x)|=0##
And so:
##f(2x) \leq (1+\epsilon)f(x)##
##f(3x) \leq (1+\epsilon)f(2x)##
##f(3x) \leq (1+\epsilon)^2f(x)##
##1 \leq f(cx) \leq (1+\epsilon)^{c-1} f(x)##
##\epsilon \to 0## ##\Rightarrow## ##1 \leq f(cx) \leq f(x)## and, for the squeeze rule:
##\displaystyle \lim_{x \to +\infty} f(cx)=1## so
##\displaystyle \lim_{x \to +\infty} \frac{f(cx)}{f(x)}=1##