Wishe Deom
- 12
- 0
[SOLVED] Proofs for Dirac delta function/distribution
Prove that
<br /> \delta(cx)=\frac{1}{|c|}\delta(x)<br />
\delta(x) is defined as
<br /> \delta(x)=\left\{\stackrel{0 for x \neq 0}{\infty for x=0}<br />
It has the properties:
<br /> \int^{\infty}_{-\infty}\delta(x)dx=1<br />
<br /> \int^{\infty}_{-\infty}f(x)\delta(x-a)dx=f(a)<br />
Two expressions D_{1} and D_{2} involving \delta(x) are considered equivalent if
<br /> \int^{\infty}_{-\infty}f(x)D_{1}dx = \int^{\infty}_{-\infty}f(x)D_{2}dx<br />
Starting from
<br /> \int^{\infty}_{-\infty}f(x)\delta(cx)dx = \int^{\infty}_{-\infty}f(x)\frac{1}{|c|}\delta(x)dx<br />
I make a substitution u=cx, and du=cdx.
<br /> \frac{1}{c}\int^{\infty}_{-\infty}f(u/c)\delta(u)du = \frac{1}{|c|}\int^{\infty}_{-\infty}f(x)\delta(x)dx<br />
Substitute f(u/c)=g(u), and on right side evaluate integral.
<br /> \frac{1}{c}\int^{\infty}_{-\infty}g(u)\delta(u)du = \frac{1}{|c|}f(0)<br />
Evaluate left side.
<br /> \frac{1}{c}g(0)= \frac{1}{|c|}f(0)<br />
By x=u/c, g(0)=f(0), so
<br /> \frac{1}{c}f(0)= \frac{1}{|c|}f(0)<br />
So, I got this far, but I don't understand where the absolute value on the right side comes from.
Homework Statement
Prove that
<br /> \delta(cx)=\frac{1}{|c|}\delta(x)<br />
Homework Equations
\delta(x) is defined as
<br /> \delta(x)=\left\{\stackrel{0 for x \neq 0}{\infty for x=0}<br />
It has the properties:
<br /> \int^{\infty}_{-\infty}\delta(x)dx=1<br />
<br /> \int^{\infty}_{-\infty}f(x)\delta(x-a)dx=f(a)<br />
Two expressions D_{1} and D_{2} involving \delta(x) are considered equivalent if
<br /> \int^{\infty}_{-\infty}f(x)D_{1}dx = \int^{\infty}_{-\infty}f(x)D_{2}dx<br />
The Attempt at a Solution
Starting from
<br /> \int^{\infty}_{-\infty}f(x)\delta(cx)dx = \int^{\infty}_{-\infty}f(x)\frac{1}{|c|}\delta(x)dx<br />
I make a substitution u=cx, and du=cdx.
<br /> \frac{1}{c}\int^{\infty}_{-\infty}f(u/c)\delta(u)du = \frac{1}{|c|}\int^{\infty}_{-\infty}f(x)\delta(x)dx<br />
Substitute f(u/c)=g(u), and on right side evaluate integral.
<br /> \frac{1}{c}\int^{\infty}_{-\infty}g(u)\delta(u)du = \frac{1}{|c|}f(0)<br />
Evaluate left side.
<br /> \frac{1}{c}g(0)= \frac{1}{|c|}f(0)<br />
By x=u/c, g(0)=f(0), so
<br /> \frac{1}{c}f(0)= \frac{1}{|c|}f(0)<br />
So, I got this far, but I don't understand where the absolute value on the right side comes from.
Last edited: