Graduate Propagation Vector of Light in Kerr Spacetime: Reference Needed

Click For Summary
The discussion revolves around the propagation of light in Kerr spacetime, specifically referencing a paper on gravitational Faraday rotation. The user seeks clarification on the derivation of equations related to the asymptotic behavior of the wave vector components, particularly the constants of motion, λ and η, which are not clearly defined in the paper. They have partially resolved the equations of motion for photons and identified η as the Carter constant and λ as the z-component of angular momentum. The final query pertains to the normalization of the wave vector k^μ, questioning whether it is standard practice to set k^t = E = 1. This inquiry highlights the need for clearer definitions and conventions in the context of Kerr spacetime.
Haorong Wu
Messages
419
Reaction score
90
TL;DR
The asymptotic behavior of a propagation vector is given in a paper. Need suggestions of reference to understand it.
Hi, there. I am currently reading the paper, Gravitational Faraday rotation induced by a Kerr black hole (https://doi.org/10.1103/PhysRevD.38.472). After Eq. (2.4), it reads that
From the equation of motion for a light ray, the asymptotic behavior of ##k_i## near the position of the source or of the observer is given by \begin{align}
k^t\rightarrow& 1,\\
k^r\rightarrow& k^r/|k^r| ,\\
k^\theta\rightarrow &\beta /r^2,\\
k^\phi \rightarrow &\lambda/(r^2\sin^2\theta),
\end{align}
where ##\beta=(\eta-\lambda^2\cot^2\theta +a^2\cos^\theta)^{1/2}k^\theta/|k^\theta|##, and ##\lambda## and ##\eta## are constants of motion.

The paper does not provide the derivation of the equations and no related reference is listed. Also, ##k^i## is not clearly defined in the paper, so I assume it takes the form as ##k^i=dx^i/d\tau## where ##\tau## is some affine parameter. But the concepts of the two constants of motion, ##\lambda## and ##\eta##, are also unfamiliar. I know there are four constants of motion in Kerr spacetime, i.e., the mass, the energy, the ##z## component of angular momentum, and the Carter constant. I could not find the definitions of the two constants of motion, ##\lambda## and ##\eta##, in the paper.

I would be grateful if anyone could share some insights or opinions.

Thanks ahead.
 
Physics news on Phys.org
I think I have solved it partially.

From the EOM of photons in Kerr spacetime, \begin{align}
\rho^2 k^r=&\pm \sqrt{R(r)},\\
\rho^2 k^\theta=&\pm \sqrt{\Theta(\theta)},\\
\rho^2 k^\phi=&-(aE-\frac{L_z}{\sin^2 \theta})+\frac a \Delta P(r),
\end{align} where at large ##r##, ##R(r)\rightarrow r^4##, ##\Theta(\theta)=\eta+a^2 \cos^2 \theta-\lambda^2 \cot^2 \theta##, ##P(r)\rightarrow Er^2##, and the ##k^\mu## is normalized such that ##k^t=E=1##, and ##\eta## is the Carter constant ##Q##, ##\lambda## is ##L_z##. The signs in the first two equations are defined as ##\pm 1=\frac {k^r}{\left | k^r \right |}=\frac {k^\theta}{\left | k^\theta \right |}##.

Then I can derive the equations in the paper.

The only left question is the normalization of ##k^\mu##. Is it a convention to normalize it by ##k^t=E=1##?
 
In an inertial frame of reference (IFR), there are two fixed points, A and B, which share an entangled state $$ \frac{1}{\sqrt{2}}(|0>_A|1>_B+|1>_A|0>_B) $$ At point A, a measurement is made. The state then collapses to $$ |a>_A|b>_B, \{a,b\}=\{0,1\} $$ We assume that A has the state ##|a>_A## and B has ##|b>_B## simultaneously, i.e., when their synchronized clocks both read time T However, in other inertial frames, due to the relativity of simultaneity, the moment when B has ##|b>_B##...

Similar threads

  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
2K
Replies
58
Views
11K
  • · Replies 8 ·
Replies
8
Views
4K