A Propagation Vector of Light in Kerr Spacetime: Reference Needed

Click For Summary
The discussion revolves around the propagation of light in Kerr spacetime, specifically referencing a paper on gravitational Faraday rotation. The user seeks clarification on the derivation of equations related to the asymptotic behavior of the wave vector components, particularly the constants of motion, λ and η, which are not clearly defined in the paper. They have partially resolved the equations of motion for photons and identified η as the Carter constant and λ as the z-component of angular momentum. The final query pertains to the normalization of the wave vector k^μ, questioning whether it is standard practice to set k^t = E = 1. This inquiry highlights the need for clearer definitions and conventions in the context of Kerr spacetime.
Haorong Wu
Messages
419
Reaction score
90
TL;DR
The asymptotic behavior of a propagation vector is given in a paper. Need suggestions of reference to understand it.
Hi, there. I am currently reading the paper, Gravitational Faraday rotation induced by a Kerr black hole (https://doi.org/10.1103/PhysRevD.38.472). After Eq. (2.4), it reads that
From the equation of motion for a light ray, the asymptotic behavior of ##k_i## near the position of the source or of the observer is given by \begin{align}
k^t\rightarrow& 1,\\
k^r\rightarrow& k^r/|k^r| ,\\
k^\theta\rightarrow &\beta /r^2,\\
k^\phi \rightarrow &\lambda/(r^2\sin^2\theta),
\end{align}
where ##\beta=(\eta-\lambda^2\cot^2\theta +a^2\cos^\theta)^{1/2}k^\theta/|k^\theta|##, and ##\lambda## and ##\eta## are constants of motion.

The paper does not provide the derivation of the equations and no related reference is listed. Also, ##k^i## is not clearly defined in the paper, so I assume it takes the form as ##k^i=dx^i/d\tau## where ##\tau## is some affine parameter. But the concepts of the two constants of motion, ##\lambda## and ##\eta##, are also unfamiliar. I know there are four constants of motion in Kerr spacetime, i.e., the mass, the energy, the ##z## component of angular momentum, and the Carter constant. I could not find the definitions of the two constants of motion, ##\lambda## and ##\eta##, in the paper.

I would be grateful if anyone could share some insights or opinions.

Thanks ahead.
 
Physics news on Phys.org
I think I have solved it partially.

From the EOM of photons in Kerr spacetime, \begin{align}
\rho^2 k^r=&\pm \sqrt{R(r)},\\
\rho^2 k^\theta=&\pm \sqrt{\Theta(\theta)},\\
\rho^2 k^\phi=&-(aE-\frac{L_z}{\sin^2 \theta})+\frac a \Delta P(r),
\end{align} where at large ##r##, ##R(r)\rightarrow r^4##, ##\Theta(\theta)=\eta+a^2 \cos^2 \theta-\lambda^2 \cot^2 \theta##, ##P(r)\rightarrow Er^2##, and the ##k^\mu## is normalized such that ##k^t=E=1##, and ##\eta## is the Carter constant ##Q##, ##\lambda## is ##L_z##. The signs in the first two equations are defined as ##\pm 1=\frac {k^r}{\left | k^r \right |}=\frac {k^\theta}{\left | k^\theta \right |}##.

Then I can derive the equations in the paper.

The only left question is the normalization of ##k^\mu##. Is it a convention to normalize it by ##k^t=E=1##?
 
Moderator's note: Spin-off from another thread due to topic change. In the second link referenced, there is a claim about a physical interpretation of frame field. Consider a family of observers whose worldlines fill a region of spacetime. Each of them carries a clock and a set of mutually orthogonal rulers. Each observer points in the (timelike) direction defined by its worldline's tangent at any given event along it. What about the rulers each of them carries ? My interpretation: each...

Similar threads

  • · Replies 20 ·
Replies
20
Views
1K
Replies
8
Views
4K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K