boboYO
- 106
- 0
http://img18.imageshack.us/img18/4295/eqn.png here is the text preceding the exercise:
http://yfrog.com/5mch5p in the exercise, where does the factor \frac{m}{(2mE)^{1/2}} come from? Comparing that equation with 5.19 (bottom right of link), why can't we just replace |p> with |E,+> and |E,->?
if I start from scratch:
| \psi \rangle = \sum_{\alpha=\pm} \int_0^{\infty}\! |E,\alpha\rangle\langle E,\alpha|\psi \rangle \,\,dEdo \left( i \hbar \frac{\partial}{\partial t} - H \right) to both sides:
\left( i \hbar \frac{\partial}{\partial t} - H \right) |\psi \rangle = 0 = \sum_{\alpha=\pm} \int_0^{\infty}\!\left[i \hbar \langle E,\alpha|\dot{\psi}\rangle -E\langle E\langleE,\alpha|\psi\rangle \right] |E, \alpha \rangle \,\, dE
\implies i \hbar \langle E,\alpha|\dot{\psi}\rangle -E\langle E\langleE,\alpha|\psi\rangle = 0
\implies \langle E,\alpha| \psi \rangle = \langle E,\alpha|\psi_0\rangle e^{-iEt/\hbar}\therefore | \psi \rangle = \sum_{\alpha=\pm} \int_0^{\infty}\! |E,\alpha\rangle \langle E,\alpha|\psi_0\rangle e^{-iEt/\hbar} \,\,dEand so the propagator is U(t) = \sum_{\alpha=\pm} \int_0^{\infty}\! |E,\alpha\rangle \langle E,\alpha| e^{-iEt/\hbar} \,\,dE
??
http://yfrog.com/5mch5p in the exercise, where does the factor \frac{m}{(2mE)^{1/2}} come from? Comparing that equation with 5.19 (bottom right of link), why can't we just replace |p> with |E,+> and |E,->?
if I start from scratch:
| \psi \rangle = \sum_{\alpha=\pm} \int_0^{\infty}\! |E,\alpha\rangle\langle E,\alpha|\psi \rangle \,\,dEdo \left( i \hbar \frac{\partial}{\partial t} - H \right) to both sides:
\left( i \hbar \frac{\partial}{\partial t} - H \right) |\psi \rangle = 0 = \sum_{\alpha=\pm} \int_0^{\infty}\!\left[i \hbar \langle E,\alpha|\dot{\psi}\rangle -E\langle E\langleE,\alpha|\psi\rangle \right] |E, \alpha \rangle \,\, dE
\implies i \hbar \langle E,\alpha|\dot{\psi}\rangle -E\langle E\langleE,\alpha|\psi\rangle = 0
\implies \langle E,\alpha| \psi \rangle = \langle E,\alpha|\psi_0\rangle e^{-iEt/\hbar}\therefore | \psi \rangle = \sum_{\alpha=\pm} \int_0^{\infty}\! |E,\alpha\rangle \langle E,\alpha|\psi_0\rangle e^{-iEt/\hbar} \,\,dEand so the propagator is U(t) = \sum_{\alpha=\pm} \int_0^{\infty}\! |E,\alpha\rangle \langle E,\alpha| e^{-iEt/\hbar} \,\,dE
??
Last edited by a moderator: