Newbie234
- 4
- 0
Let's say we have the statement \sum^{\infty}_{0}f(x)=\frac{\sum^{\infty}_{0}g(x)}{\sum^{\infty}_{0}h(x)} does this imply that
\int^{\infty}_{0}f(x)=\frac{\int^{\infty}_{0}g(x)}{\int^{\infty}_{0}h(x)}?
Also if \sum^{\infty}_{0}f(x)=\sum^{\infty}_{0}g(x) does this imply that f(x)=g(x), or just that f(x)~g(x) (asymptotically equivalent)?
Thanks.
\int^{\infty}_{0}f(x)=\frac{\int^{\infty}_{0}g(x)}{\int^{\infty}_{0}h(x)}?
Also if \sum^{\infty}_{0}f(x)=\sum^{\infty}_{0}g(x) does this imply that f(x)=g(x), or just that f(x)~g(x) (asymptotically equivalent)?
Thanks.
Last edited: