A proton is a composite object with quarks inside, and the proton has a size, about 1 fm=10^-15 m, which is essentially the typical distance between the quarks. In the frame of an observer hovering just outside the event horizon, the proton falls past at a velocity close to c, so that the de Broglie wavelength corresponding to its center-of-mass momentum is very short -- much shorter than the size of the proton itself. In a frame comoving with the proton, its de Broglie wavelength is infinite. Because a proton has a finite size, it would certainly experience tidal forces that would tend to distort its shape, i.e., cause the correlations among the quarks to change, probably giving it an ellipsoidal shape. However, tidal forces have less effect on smaller objects, and a proton is very small, so I think for any astrophysical black hole the effect would be much too small to measure.