Prove A C B for Set Theory: Help with Pi and Integers

Andrax
Messages
117
Reaction score
0

Homework Statement



A = { pi + 2k pi / k \in Z }
B = {(- pi / 3) + (2k pi / 3 ) / k \in A }
Prove that A C B

Homework Equations


A C B = \forallXE E : x \ni A \Rightarrow X \ni B

The Attempt at a Solution


\ni[k E Z ]: x = pi + 2k pi
\ni[k E Z ]: x = pi ( 1 + 2k)
I'm sure i need to get a k and replace it with k' to prove that it belongs to B
 
Physics news on Phys.org
Edit : solved it by replacing pi by -pi/3+4pi/3 which led to the correct answer.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top