Is the Set {cos x, cos 2x, cos 3x, ...} Orthogonal Using Integral Products?

  • Thread starter Thread starter roto25
  • Start date Start date
  • Tags Tags
    Orthogonal Set
roto25
Messages
11
Reaction score
0
How would you prove, using the integral product, that the set of {cos x, cos 2x, cos 3x, cos 4x, ...} is an orthogonal set?
 
Last edited:
Physics news on Phys.org
welcome to pf!

hi roto25! welcome to pf! :wink:

i] define the integral product

ii] define orthogonal set

iii] apply i and ii …

what do you get? :smile:
 
over the interval -pi to pi, the integral of cos(mx)cos(nx)dx is zero, as long as m and n are integers. Therefore, if you select ANY pair of elements from the set, the 'integral of their product' will be zero, thereby satisfying the condition of orthogonality.
 
Bavid said:
over the interval -pi to pi, the integral of cos(mx)cos(nx)dx is zero, as long as m and n are integers. Therefore, if you select ANY pair of elements from the set, the 'integral of their product' will be zero, thereby satisfying the condition of orthogonality.

On top of what Bavid said if you don't know where to start set up the integral and use integration by parts.
 
Back
Top