Prove Cubic Log Integral: -π^4/15

  • Context: MHB 
  • Thread starter Thread starter alyafey22
  • Start date Start date
  • Tags Tags
    Cubic Integral Log
Click For Summary
SUMMARY

The integral $$\int^1_0 \frac{\log^3(1-x)}{x}\, dx$$ evaluates to $$-\frac{\pi^4}{15}$$ through a substitution of $$1-x=t$$, transforming the integral into $$I= \int_{0}^{1} \frac{\ln^{3} t}{1-t}\ dt$$. This result is confirmed by the relationship $$I = - 6\ \sum_{k=1}^{\infty} \frac{1}{k^{4}}$$, which equals $$-\frac{\pi^{4}}{15}$$. Additionally, the discussion introduces a generalization for $$n \geq 2$$, stating that $$\int^1_0 \frac{\log^{n-1}(1-x)}{x}\, dx = (-1)^{n-1} \Gamma(n) \zeta(n)$$, specifically for $$n = 4$$, reinforcing the established result.

PREREQUISITES
  • Understanding of definite integrals and logarithmic functions
  • Familiarity with the Gamma function and Riemann zeta function
  • Knowledge of series convergence and summation techniques
  • Experience with substitution methods in integral calculus
NEXT STEPS
  • Study the properties of the Gamma function and its applications in integrals
  • Explore the Riemann zeta function, particularly $$\zeta(4)$$ and its significance
  • Learn advanced techniques in integral calculus, focusing on substitutions
  • Investigate the convergence of series, specifically $$\sum_{k=1}^{\infty} \frac{1}{k^{4}}$$
USEFUL FOR

Mathematicians, students of advanced calculus, and researchers interested in integral evaluations and special functions.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Prove the following

$$\int^1_0 \frac{\log^3(1-x)}{x}\, dx=-\frac{\pi^4}{15}$$​
 
Last edited:
Physics news on Phys.org
ZaidAlyafey said:
Prove the following

$$\int^1_0 \frac{\log^3(1-x)}{x}\, dx=-\frac{\pi^4}{15}$$​

With the substitution $\displaystyle 1-x=t$ the integral becomes...

$\displaystyle I= \int_{0}^{1} \frac{\ln^{3} t}{1-t}\ dt\ (1)$

... and according to the (5) in...

http://www.mathhelpboards.com/f49/integrals-natural-logarithm-5286/

... is...

$\displaystyle I = - 6\ \sum_{k=1}^{\infty} \frac{1}{k^{4}} = - \frac{\pi^{4}}{15}\ (2)$

Kind regards

$\chi$ $\sigma$
 
Actually we can generalize for $$n\geq 2$$

$$

\int^1_0 \frac{\log^{n-1}(1-x)}{x}\, dx =(-1)^{n-1} \int^{\infty}_0 \frac{x^{n-1}}{e^x-1}\,dx = (-1)^{n-1}\Gamma(n) \zeta(n)

$$

For $$n = 4 $$

$$

\int^1_0 \frac{\log^{3}(1-x)}{x}\, dx = -\Gamma(4) \zeta(4)=-6\zeta(4) = -\frac{\pi^4}{15}

$$
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
2K
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K