MHB Prove $\dfrac{a^3}{c}+\dfrac{b^3}{d}\ge 1$ with Algebra Challenge

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Algebra Challenge
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b,\,c$ and $d$ be positive real numbers such that $(a^2+b^2)^3=c^2+d^2$, prove that $\dfrac{a^3}{c}+\dfrac{b^3}{d}\ge 1$.
 
Mathematics news on Phys.org
Hint:

Cauchy-Schwarz Inequality
 
My solution:

Apply the Cauchy-Schwarz inequality to the sum of $a^2+b^2$, we have:

$$a^2+b^2=\sqrt{a}\sqrt{a^3}+\sqrt{b}\sqrt{b^3}=\frac{\sqrt{c}\sqrt{a}\sqrt{a^3}}{\sqrt{c}}+\frac{\sqrt{d}\sqrt{b}\sqrt{b^3}}{\sqrt{d}}\le \sqrt{ac+bd}\sqrt{\frac{a^3}{c}+\frac{b^3}{d}}$$

Now we rearrange it to make $$\frac{a^3}{c}+\frac{b^3}{d}$$ on the LHS of the inequality, we see that we get:

$$\frac{a^3}{c}+\frac{b^3}{d}\ge\frac{(a^2+b^2)^2}{ac+bd}$$(*)

Using again the Cauchy-Schwarz inequality to the sum of $ac+bd$ we have:

$$ac+bd\le\sqrt{a^2+b^2}\sqrt{c^2+d^2}$$

$$\begin{align*}\therefore \frac{a^3}{c}+\frac{b^3}{d}&\ge\frac{(a^2+b^2)^2}{ac+bd}\\&\ge \frac{(a^2+b^2)^2}{\sqrt{a^2+b^2}\sqrt{c^2+d^2}}\\&\ge \frac{(a^2+b^2)^{\frac{3}{2}}}{(c^2+d^2)^{\frac{1}{2}}}\\&\ge \left(\frac{(a^2+b^2)^3}{(c^2+d^2)}\right)^{\frac{1}{2}}\\&\ge 1\,\,\,\,\,\,\,\,\text{(Q.E.D.)}\end{align*}$$
 
anemone said:
Let $a,\,b,\,c$ and $d$ be positive real numbers such that $(a^2+b^2)^3=c^2+d^2---(1)$, prove that $\dfrac{a^3}{c}+\dfrac{b^3}{d}\ge 1$.
my solution :
using $AP\geq GP$
$\dfrac{a^3}{c}+\dfrac{b^3}{d}=\dfrac{a^3d+b^3c}{cd}\geq \dfrac{2a^3d}{cd}=\dfrac{2a^3}{c}---(2)$
equality occurs when $a^3d=b^3c (\,\, that \,\ is :\ a=b\,\,and\,\, c=d)$
if so $(1)$ becomes:$8a^6=2c^2$ ,or $a^3=\dfrac {c}{2}$
and $(2)$ becomes:
$\dfrac{a^3}{c}+\dfrac{b^3}{d}=\dfrac{a^3d+b^3c}{cd}\geq \dfrac{2a^3}{c}=1$
 
Re: Albert's solution.

Albert said:
equality occurs when $a^3d=b^3c (\,\, that \,\ is :\ a=b\,\,and\,\, c=d)$

I don't think $a^3d=b^3c$ implies $a=b$ and $c=d$. Consider $2^3\cdot8$ and $4^3\cdot1$.
 
greg1313 said:
Re: Albert's solution.

I don't think $a^3d=b^3c$ implies $a=b$ and $c=d$. Consider $2^3\cdot8$ and $4^3\cdot1$.

consider $a^2+b^2$ when $a=b$ minimun of $a^2+b^2$ occurs
also consider $c^2+d^2$ when $c=d$ minimun of $c^2+d^2$ occurs
and more if $a=2,b=4,c=1,d=8$
$(a^2+b^2)^3=c^2+d^2$ does not fit
 
Last edited by a moderator:
anemone said:
My solution:

Apply the Cauchy-Schwarz inequality to the sum of $a^2+b^2$, we have:

$$a^2+b^2=\sqrt{a}\sqrt{a^3}+\sqrt{b}\sqrt{b^3}=\frac{\sqrt{c}\sqrt{a}\sqrt{a^3}}{\sqrt{c}}+\frac{\sqrt{d}\sqrt{b}\sqrt{b^3}}{\sqrt{d}}\le \sqrt{ac+bd}\sqrt{\frac{a^3}{c}+\frac{b^3}{d}}$$

Now we rearrange it to make $$\frac{a^3}{c}+\frac{b^3}{d}$$ on the LHS of the inequality, we see that we get:

$$\frac{a^3}{c}+\frac{b^3}{d}\ge\frac{(a^2+b^2)^2}{ac+bd}$$(*)

Using again the Cauchy-Schwarz inequality to the sum of $ac+bd$ we have:

$$ac+bd\le\sqrt{a^2+b^2}\sqrt{c^2+d^2}$$

$$\begin{align*}\therefore \frac{a^3}{c}+\frac{b^3}{d}&\ge\frac{(a^2+b^2)^2}{ac+bd}\\&\ge \frac{(a^2+b^2)^2}{\sqrt{a^2+b^2}\sqrt{c^2+d^2}}\\&\ge \frac{(a^2+b^2)^{\frac{3}{2}}}{(c^2+d^2)^{\frac{1}{2}}}\\&\ge \left(\frac{(a^2+b^2)^3}{(c^2+d^2)}\right)^{\frac{1}{2}}\\&\ge 1\,\,\,\,\,\,\,\,\text{(Q.E.D.)}\end{align*}$$

I didn't know where my head was the time I composed my solution as I didn't include the condition when the equality occurs...sorry about it!

In my solution, equality occurs when $$\frac{a}{c}=\frac{b}{d}$$.
 
Albert said:
my solution :
using $AP\geq GP$
$\dfrac{a^3}{c}+\dfrac{b^3}{d}=\dfrac{a^3d+b^3c}{cd}\geq \dfrac{2a^3d}{cd}=\dfrac{2a^3}{c}---(2)$
equality occurs when $a^3d=b^3c (\,\, that \,\ is :\ a=b\,\,and\,\, c=d)$
if so $(1)$ becomes:$8a^6=2c^2$ ,or $a^3=\dfrac {c}{2}$
and $(2)$ becomes:
$\dfrac{a^3}{c}+\dfrac{b^3}{d}=\dfrac{a^3d+b^3c}{cd}\geq \dfrac{2a^3}{c}=1$

Hi Albert,

Albeit it's true that equality occurs when $a=b,\,c=d$ but I don't see how we could provide the airtight proof from $a^3d=b^3c$ and $(a^2+b^2)^3=c^2+d^2$ with the conclusion that $a=b$ and $c=d$...
 
anemone said:
Hi Albert,

Albeit it's true that equality occurs when $a=b,\,c=d$ but I don't see how we could provide the airtight proof from $a^3d=b^3c$ and $(a^2+b^2)^3=c^2+d^2$ with the conclusion that $a=b$ and $c=d$...
$if \,a=b,\,\, then \\
\dfrac{8a^6}{2c^2}=\dfrac{c^2+d^2}{2c^2}\\
\therefore \dfrac{2a^3}{c}=\sqrt{\dfrac{c^2+d^2}{2c^2}}\geq\sqrt{\dfrac{2c
^2}{2c^2}}=1$
equality occurs when $c=d$
 
Back
Top