Prove $\dfrac{a^3}{c}+\dfrac{b^3}{d}\ge 1$ with Algebra Challenge

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Algebra Challenge
Click For Summary

Discussion Overview

The discussion revolves around proving the inequality $\dfrac{a^3}{c}+\dfrac{b^3}{d}\ge 1$ under the condition that $(a^2+b^2)^3=c^2+d^2$, with participants sharing their solutions and hints related to the problem.

Discussion Character

  • Homework-related, Mathematical reasoning

Main Points Raised

  • One participant states the problem and asks for a proof of the inequality given the specified condition.
  • Another participant provides a hint, though the content of the hint is not detailed.
  • Multiple participants share their solutions, with one expressing regret for not including conditions for equality in their solution.
  • There are responses to a specific solution, indicating ongoing discussion and potential critique of the approaches taken.

Areas of Agreement / Disagreement

The discussion does not appear to reach a consensus, as multiple solutions are presented and responses indicate differing views on the correctness of these solutions.

Contextual Notes

Some solutions may lack clarity regarding conditions for equality, and there may be unresolved mathematical steps in the proposed proofs.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b,\,c$ and $d$ be positive real numbers such that $(a^2+b^2)^3=c^2+d^2$, prove that $\dfrac{a^3}{c}+\dfrac{b^3}{d}\ge 1$.
 
Mathematics news on Phys.org
Hint:

Cauchy-Schwarz Inequality
 
My solution:

Apply the Cauchy-Schwarz inequality to the sum of $a^2+b^2$, we have:

$$a^2+b^2=\sqrt{a}\sqrt{a^3}+\sqrt{b}\sqrt{b^3}=\frac{\sqrt{c}\sqrt{a}\sqrt{a^3}}{\sqrt{c}}+\frac{\sqrt{d}\sqrt{b}\sqrt{b^3}}{\sqrt{d}}\le \sqrt{ac+bd}\sqrt{\frac{a^3}{c}+\frac{b^3}{d}}$$

Now we rearrange it to make $$\frac{a^3}{c}+\frac{b^3}{d}$$ on the LHS of the inequality, we see that we get:

$$\frac{a^3}{c}+\frac{b^3}{d}\ge\frac{(a^2+b^2)^2}{ac+bd}$$(*)

Using again the Cauchy-Schwarz inequality to the sum of $ac+bd$ we have:

$$ac+bd\le\sqrt{a^2+b^2}\sqrt{c^2+d^2}$$

$$\begin{align*}\therefore \frac{a^3}{c}+\frac{b^3}{d}&\ge\frac{(a^2+b^2)^2}{ac+bd}\\&\ge \frac{(a^2+b^2)^2}{\sqrt{a^2+b^2}\sqrt{c^2+d^2}}\\&\ge \frac{(a^2+b^2)^{\frac{3}{2}}}{(c^2+d^2)^{\frac{1}{2}}}\\&\ge \left(\frac{(a^2+b^2)^3}{(c^2+d^2)}\right)^{\frac{1}{2}}\\&\ge 1\,\,\,\,\,\,\,\,\text{(Q.E.D.)}\end{align*}$$
 
anemone said:
Let $a,\,b,\,c$ and $d$ be positive real numbers such that $(a^2+b^2)^3=c^2+d^2---(1)$, prove that $\dfrac{a^3}{c}+\dfrac{b^3}{d}\ge 1$.
my solution :
using $AP\geq GP$
$\dfrac{a^3}{c}+\dfrac{b^3}{d}=\dfrac{a^3d+b^3c}{cd}\geq \dfrac{2a^3d}{cd}=\dfrac{2a^3}{c}---(2)$
equality occurs when $a^3d=b^3c (\,\, that \,\ is :\ a=b\,\,and\,\, c=d)$
if so $(1)$ becomes:$8a^6=2c^2$ ,or $a^3=\dfrac {c}{2}$
and $(2)$ becomes:
$\dfrac{a^3}{c}+\dfrac{b^3}{d}=\dfrac{a^3d+b^3c}{cd}\geq \dfrac{2a^3}{c}=1$
 
Re: Albert's solution.

Albert said:
equality occurs when $a^3d=b^3c (\,\, that \,\ is :\ a=b\,\,and\,\, c=d)$

I don't think $a^3d=b^3c$ implies $a=b$ and $c=d$. Consider $2^3\cdot8$ and $4^3\cdot1$.
 
greg1313 said:
Re: Albert's solution.

I don't think $a^3d=b^3c$ implies $a=b$ and $c=d$. Consider $2^3\cdot8$ and $4^3\cdot1$.

consider $a^2+b^2$ when $a=b$ minimun of $a^2+b^2$ occurs
also consider $c^2+d^2$ when $c=d$ minimun of $c^2+d^2$ occurs
and more if $a=2,b=4,c=1,d=8$
$(a^2+b^2)^3=c^2+d^2$ does not fit
 
Last edited by a moderator:
anemone said:
My solution:

Apply the Cauchy-Schwarz inequality to the sum of $a^2+b^2$, we have:

$$a^2+b^2=\sqrt{a}\sqrt{a^3}+\sqrt{b}\sqrt{b^3}=\frac{\sqrt{c}\sqrt{a}\sqrt{a^3}}{\sqrt{c}}+\frac{\sqrt{d}\sqrt{b}\sqrt{b^3}}{\sqrt{d}}\le \sqrt{ac+bd}\sqrt{\frac{a^3}{c}+\frac{b^3}{d}}$$

Now we rearrange it to make $$\frac{a^3}{c}+\frac{b^3}{d}$$ on the LHS of the inequality, we see that we get:

$$\frac{a^3}{c}+\frac{b^3}{d}\ge\frac{(a^2+b^2)^2}{ac+bd}$$(*)

Using again the Cauchy-Schwarz inequality to the sum of $ac+bd$ we have:

$$ac+bd\le\sqrt{a^2+b^2}\sqrt{c^2+d^2}$$

$$\begin{align*}\therefore \frac{a^3}{c}+\frac{b^3}{d}&\ge\frac{(a^2+b^2)^2}{ac+bd}\\&\ge \frac{(a^2+b^2)^2}{\sqrt{a^2+b^2}\sqrt{c^2+d^2}}\\&\ge \frac{(a^2+b^2)^{\frac{3}{2}}}{(c^2+d^2)^{\frac{1}{2}}}\\&\ge \left(\frac{(a^2+b^2)^3}{(c^2+d^2)}\right)^{\frac{1}{2}}\\&\ge 1\,\,\,\,\,\,\,\,\text{(Q.E.D.)}\end{align*}$$

I didn't know where my head was the time I composed my solution as I didn't include the condition when the equality occurs...sorry about it!

In my solution, equality occurs when $$\frac{a}{c}=\frac{b}{d}$$.
 
Albert said:
my solution :
using $AP\geq GP$
$\dfrac{a^3}{c}+\dfrac{b^3}{d}=\dfrac{a^3d+b^3c}{cd}\geq \dfrac{2a^3d}{cd}=\dfrac{2a^3}{c}---(2)$
equality occurs when $a^3d=b^3c (\,\, that \,\ is :\ a=b\,\,and\,\, c=d)$
if so $(1)$ becomes:$8a^6=2c^2$ ,or $a^3=\dfrac {c}{2}$
and $(2)$ becomes:
$\dfrac{a^3}{c}+\dfrac{b^3}{d}=\dfrac{a^3d+b^3c}{cd}\geq \dfrac{2a^3}{c}=1$

Hi Albert,

Albeit it's true that equality occurs when $a=b,\,c=d$ but I don't see how we could provide the airtight proof from $a^3d=b^3c$ and $(a^2+b^2)^3=c^2+d^2$ with the conclusion that $a=b$ and $c=d$...
 
anemone said:
Hi Albert,

Albeit it's true that equality occurs when $a=b,\,c=d$ but I don't see how we could provide the airtight proof from $a^3d=b^3c$ and $(a^2+b^2)^3=c^2+d^2$ with the conclusion that $a=b$ and $c=d$...
$if \,a=b,\,\, then \\
\dfrac{8a^6}{2c^2}=\dfrac{c^2+d^2}{2c^2}\\
\therefore \dfrac{2a^3}{c}=\sqrt{\dfrac{c^2+d^2}{2c^2}}\geq\sqrt{\dfrac{2c
^2}{2c^2}}=1$
equality occurs when $c=d$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K