Prove $\dfrac{a^3}{c}+\dfrac{b^3}{d}\ge 1$ with Algebra Challenge

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Algebra Challenge
Click For Summary
SUMMARY

The inequality $\dfrac{a^3}{c}+\dfrac{b^3}{d}\ge 1$ is proven under the condition that $(a^2+b^2)^3=c^2+d^2$, where $a, b, c, d$ are positive real numbers. The discussion emphasizes the importance of including conditions for equality in the proof. Participants shared various approaches to the proof, highlighting the necessity of rigorous algebraic manipulation to establish the inequality definitively.

PREREQUISITES
  • Understanding of algebraic inequalities
  • Familiarity with the properties of positive real numbers
  • Knowledge of polynomial identities
  • Experience with proof techniques in mathematics
NEXT STEPS
  • Study the application of the AM-GM inequality in algebraic proofs
  • Explore the implications of equality conditions in inequalities
  • Learn about polynomial inequalities and their proofs
  • Investigate the role of symmetric sums in algebraic expressions
USEFUL FOR

Mathematics students, educators, and anyone interested in advanced algebraic proofs and inequalities.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b,\,c$ and $d$ be positive real numbers such that $(a^2+b^2)^3=c^2+d^2$, prove that $\dfrac{a^3}{c}+\dfrac{b^3}{d}\ge 1$.
 
Mathematics news on Phys.org
Hint:

Cauchy-Schwarz Inequality
 
My solution:

Apply the Cauchy-Schwarz inequality to the sum of $a^2+b^2$, we have:

$$a^2+b^2=\sqrt{a}\sqrt{a^3}+\sqrt{b}\sqrt{b^3}=\frac{\sqrt{c}\sqrt{a}\sqrt{a^3}}{\sqrt{c}}+\frac{\sqrt{d}\sqrt{b}\sqrt{b^3}}{\sqrt{d}}\le \sqrt{ac+bd}\sqrt{\frac{a^3}{c}+\frac{b^3}{d}}$$

Now we rearrange it to make $$\frac{a^3}{c}+\frac{b^3}{d}$$ on the LHS of the inequality, we see that we get:

$$\frac{a^3}{c}+\frac{b^3}{d}\ge\frac{(a^2+b^2)^2}{ac+bd}$$(*)

Using again the Cauchy-Schwarz inequality to the sum of $ac+bd$ we have:

$$ac+bd\le\sqrt{a^2+b^2}\sqrt{c^2+d^2}$$

$$\begin{align*}\therefore \frac{a^3}{c}+\frac{b^3}{d}&\ge\frac{(a^2+b^2)^2}{ac+bd}\\&\ge \frac{(a^2+b^2)^2}{\sqrt{a^2+b^2}\sqrt{c^2+d^2}}\\&\ge \frac{(a^2+b^2)^{\frac{3}{2}}}{(c^2+d^2)^{\frac{1}{2}}}\\&\ge \left(\frac{(a^2+b^2)^3}{(c^2+d^2)}\right)^{\frac{1}{2}}\\&\ge 1\,\,\,\,\,\,\,\,\text{(Q.E.D.)}\end{align*}$$
 
anemone said:
Let $a,\,b,\,c$ and $d$ be positive real numbers such that $(a^2+b^2)^3=c^2+d^2---(1)$, prove that $\dfrac{a^3}{c}+\dfrac{b^3}{d}\ge 1$.
my solution :
using $AP\geq GP$
$\dfrac{a^3}{c}+\dfrac{b^3}{d}=\dfrac{a^3d+b^3c}{cd}\geq \dfrac{2a^3d}{cd}=\dfrac{2a^3}{c}---(2)$
equality occurs when $a^3d=b^3c (\,\, that \,\ is :\ a=b\,\,and\,\, c=d)$
if so $(1)$ becomes:$8a^6=2c^2$ ,or $a^3=\dfrac {c}{2}$
and $(2)$ becomes:
$\dfrac{a^3}{c}+\dfrac{b^3}{d}=\dfrac{a^3d+b^3c}{cd}\geq \dfrac{2a^3}{c}=1$
 
Re: Albert's solution.

Albert said:
equality occurs when $a^3d=b^3c (\,\, that \,\ is :\ a=b\,\,and\,\, c=d)$

I don't think $a^3d=b^3c$ implies $a=b$ and $c=d$. Consider $2^3\cdot8$ and $4^3\cdot1$.
 
greg1313 said:
Re: Albert's solution.

I don't think $a^3d=b^3c$ implies $a=b$ and $c=d$. Consider $2^3\cdot8$ and $4^3\cdot1$.

consider $a^2+b^2$ when $a=b$ minimun of $a^2+b^2$ occurs
also consider $c^2+d^2$ when $c=d$ minimun of $c^2+d^2$ occurs
and more if $a=2,b=4,c=1,d=8$
$(a^2+b^2)^3=c^2+d^2$ does not fit
 
Last edited by a moderator:
anemone said:
My solution:

Apply the Cauchy-Schwarz inequality to the sum of $a^2+b^2$, we have:

$$a^2+b^2=\sqrt{a}\sqrt{a^3}+\sqrt{b}\sqrt{b^3}=\frac{\sqrt{c}\sqrt{a}\sqrt{a^3}}{\sqrt{c}}+\frac{\sqrt{d}\sqrt{b}\sqrt{b^3}}{\sqrt{d}}\le \sqrt{ac+bd}\sqrt{\frac{a^3}{c}+\frac{b^3}{d}}$$

Now we rearrange it to make $$\frac{a^3}{c}+\frac{b^3}{d}$$ on the LHS of the inequality, we see that we get:

$$\frac{a^3}{c}+\frac{b^3}{d}\ge\frac{(a^2+b^2)^2}{ac+bd}$$(*)

Using again the Cauchy-Schwarz inequality to the sum of $ac+bd$ we have:

$$ac+bd\le\sqrt{a^2+b^2}\sqrt{c^2+d^2}$$

$$\begin{align*}\therefore \frac{a^3}{c}+\frac{b^3}{d}&\ge\frac{(a^2+b^2)^2}{ac+bd}\\&\ge \frac{(a^2+b^2)^2}{\sqrt{a^2+b^2}\sqrt{c^2+d^2}}\\&\ge \frac{(a^2+b^2)^{\frac{3}{2}}}{(c^2+d^2)^{\frac{1}{2}}}\\&\ge \left(\frac{(a^2+b^2)^3}{(c^2+d^2)}\right)^{\frac{1}{2}}\\&\ge 1\,\,\,\,\,\,\,\,\text{(Q.E.D.)}\end{align*}$$

I didn't know where my head was the time I composed my solution as I didn't include the condition when the equality occurs...sorry about it!

In my solution, equality occurs when $$\frac{a}{c}=\frac{b}{d}$$.
 
Albert said:
my solution :
using $AP\geq GP$
$\dfrac{a^3}{c}+\dfrac{b^3}{d}=\dfrac{a^3d+b^3c}{cd}\geq \dfrac{2a^3d}{cd}=\dfrac{2a^3}{c}---(2)$
equality occurs when $a^3d=b^3c (\,\, that \,\ is :\ a=b\,\,and\,\, c=d)$
if so $(1)$ becomes:$8a^6=2c^2$ ,or $a^3=\dfrac {c}{2}$
and $(2)$ becomes:
$\dfrac{a^3}{c}+\dfrac{b^3}{d}=\dfrac{a^3d+b^3c}{cd}\geq \dfrac{2a^3}{c}=1$

Hi Albert,

Albeit it's true that equality occurs when $a=b,\,c=d$ but I don't see how we could provide the airtight proof from $a^3d=b^3c$ and $(a^2+b^2)^3=c^2+d^2$ with the conclusion that $a=b$ and $c=d$...
 
anemone said:
Hi Albert,

Albeit it's true that equality occurs when $a=b,\,c=d$ but I don't see how we could provide the airtight proof from $a^3d=b^3c$ and $(a^2+b^2)^3=c^2+d^2$ with the conclusion that $a=b$ and $c=d$...
$if \,a=b,\,\, then \\
\dfrac{8a^6}{2c^2}=\dfrac{c^2+d^2}{2c^2}\\
\therefore \dfrac{2a^3}{c}=\sqrt{\dfrac{c^2+d^2}{2c^2}}\geq\sqrt{\dfrac{2c
^2}{2c^2}}=1$
equality occurs when $c=d$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
986
Replies
1
Views
2K
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K