Prove f(x) is zero in range [-1,1]

  • Thread starter jaus tail
  • Start date
  • #1
613
47

Homework Statement


A function f(x) is continuous in the range [-1,1]
f(x) = 2xf(x2 - 1)

Prove that f(x) = 0 everywhere in range [-1,1]

Homework Equations


I don't know how to proceed.
By putting values as x = 0, I got f(0) = 2*0 = 0.
f(1) = 2*1*f(0) = 0.

And I also get f(negative values) = f(positive values). So it's like a cosine wave.

But how to prove that the values are equal to zero.

The Attempt at a Solution


How to proceed? Continuous means value of f(x) when I approach from left side = value of f(x) when I approach from right side. Not sure how to imply it here.
 

Answers and Replies

  • #2
BvU
Science Advisor
Homework Helper
14,398
3,708
And I also get f(negative values) = f(positive values)
How ? And: if you are right, and if you can also get the opposite, you have it !
 
  • #3
613
47
No, I think i wrote wrong.
Putting x = -1,
I get f(-1) = 2(-1)*f((-1)2 -1 )
which is f(-1) = -2f(0)
and f(1) = 2f(0)

f(0) = 0*f(-1) = 0.
So f(0) = 0
So f(-1) = 0 and so is f(1) from underlined parts.

So f(x) = 0 for x = -1, 0, 1. But how to prove for other values of x?

when x = 0.5. I get f(0.5) = 2*0.5 f(0.25 - 1) = f(0.75)
and when I put x = 0.75 I get
f(0.75) = 2*0.75 f(0.5625-1) = 1.5f(-0.4375)

I don't know how to prove that all these f(x) are equal to zero.
 
  • #4
613
47
How ? And: if you are right, and if you can also get the opposite, you have it !
Although I goofed up there, how would I have it if I proved this. why would f(x) be zero if f(-x) = f(x).
A cosine wave is continuous in range -90 to + 90 but it's not always zero, and it satisfies condition f(-x) = f(x)
 
  • #5
PeroK
Science Advisor
Homework Helper
Insights Author
Gold Member
2020 Award
17,074
8,869
Although I goofed up there, how would I have it if I proved this. why would f(x) be zero if f(-x) = f(x).
A cosine wave is continuous in range -90 to + 90 but it's not always zero, and it satisfies condition f(-x) = f(x)

This looks tricky. What happens if you start from any point in ##x_1 \in [-1, 1]## and generate a recursive sequence by ##x_{n+1} = x_n^2 - 1##?
 
  • #6
613
47
What's a recursive sequence?

I tried with mean value theorem.
a = -1, b = 1
there is a point c between a and b such that f'(c) = [ f(b) - f(a) ] / [b - a]
this is zero since f(-1) = f(1) = 0
So since f'(c) is zero, we get a constant value and since one constant value is zero we can say that f(x) = constant = 0.
 
  • #7
PeroK
Science Advisor
Homework Helper
Insights Author
Gold Member
2020 Award
17,074
8,869
What's a recursive sequence?

I tried with mean value theorem.
a = -1, b = 1
there is a point c between a and b such that f'(c) = [ f(b) - f(a) ] / [b - a]
this is zero since f(-1) = f(1) = 0
So since f'(c) is zero, we get a constant value and since one constant value is zero we can say that f(x) = constant = 0.

It doesn't say that ##f## is differentiable. But, another idea is to use the fact that a continuous function attains its max and min on a closed interval.

Regarding my previous idea. If you start with a number. E.g. ##x_1 = 1/2##, then ##x_2 = x_1^2 - 1 = -3/4## and ##x_3 = x_2^2 - 1 = -7/16## and so on. This sequence may converge to a point ##x## where ##x^2 - 1 = x## (if there is such a point).

These are just ideas. I haven't spotted the solution yet, so they may not help!
 
Last edited:
  • #8
109
37
Simple proof:

Go to the point where x²-1=x and call it P12. (Should be -0.6180339887498949 and 1.6180339887498949)
f(P12)=2P12 f(P12)
1/2=P12 except if f is zero. And because P12 is clearly not 1/2, f must be zero.

Edit: Wait im stupid. That says only that f(P12) must be zero...
 
  • #9
14,846
12,337
It doesn't say that ##f## is differentiable.
So maybe integration is an idea. What about ##F(x):= \int_{-1}^x f(y)dy\,##? With ##g(x)=x^2-1## we get easier conditions plus differentiability. However, I haven't found the trick, yet.
 
  • #10
PeroK
Science Advisor
Homework Helper
Insights Author
Gold Member
2020 Award
17,074
8,869
So maybe integration is an idea. What about ##F(x):= \int_{-1}^x f(y)dy\,##? With ##g(x)=x^2-1## we get easier conditions plus differentiability. However, I haven't found the trick, yet.

Do you think it might be false?

The condition on the interval ##[0, 1]## is irrelevant. If you can satisfy the condition on ##[-1, 0]## that would do it.
 
  • #11
14,846
12,337
Do you think it might be false?
What could be false? I only thought continuity invites to be integrated to ##F'(x)=f(x)## with ##F(0)=F(-1)=F(1)=0## and ##F=F\circ g## if I didn't make a mistake. These are easier to handle.
The condition on the interval ##[0, 1]## is irrelevant. If you can satisfy the condition on ##[-1, 0]## that would do it.
Sure, but do we have it on one of them? I'm looking for an argument without iterations.
 
  • #12
PeroK
Science Advisor
Homework Helper
Insights Author
Gold Member
2020 Award
17,074
8,869
What could be false?

That there might be a continuous function that meets the criteria?
 
  • #13
14,846
12,337
That there might be a continuous function that meets the criteria?
I don't get it, sorry. Since it is supposed to result in ##f(x)=0## it'll be both, continuous and differentiable. I think that this is the only solution, I just don't see the killer argument. I simply thought, that we can get differentiability for free by an integration.
 
  • #14
Ray Vickson
Science Advisor
Homework Helper
Dearly Missed
10,706
1,722
Although I goofed up there, how would I have it if I proved this. why would f(x) be zero if f(-x) = f(x).
A cosine wave is continuous in range -90 to + 90 but it's not always zero, and it satisfies condition f(-x) = f(x)

What could be false? I only thought continuity invites to be integrated to ##F'(x)=f(x)## with ##F(0)=F(-1)=F(1)=0## and ##F=F\circ g## if I didn't make a mistake. These are easier to handle.

Sure, but do we have it on one of them? I'm looking for an argument without iterations.

Iteration plus integration will do the job. Let
$$ F(x) = \int_0^x f(t) \, dt,$$
so that we get
$$F(x) = F(x^2-1) - F(-1).$$
Since ##f## is an odd function, ##F## is even; thus ##F(-1) = F(1)##, so we have ##F(x) = F(x^2-1) - F(0)##. Using ##F(0)=0## we have ##F(1) = -F(1)##, so ##F(1) =0.## Therefore, we have
$$F(x) = F(x^2 - 1).$$

Now, for any ##x_0 \in (-1,1)## the iterative scheme ##x_1 = x_0^2-1, x_2 = x_1^2 - 1, \ldots## converges to the negative solution of ##x = x^2-1##, which is ##\tau \equiv (1-\sqrt{r})/2 \doteq -0.61803##. (We can see this by looking at the "cobweb diagram" of the iteration scheme ##x_{n+1} = x_n^2 - 1.##). Since ##F(x_{n+1}) = F(x_n)## for all ##n \geq 0## we have ##F(x_0) = \lim_{n \to \infty} F(x_n ) = F(\tau)## for any ##x_0##. In other words, ##F(x) = \text{constant}.##
 
  • Like
Likes PeroK and fresh_42
  • #15
Delta2
Homework Helper
Insights Author
Gold Member
3,847
1,506
My idea is that ##f(x)=2xf(x^2-1)=2x2(x^2-1)f((x^2-1)^2-1)=...=2^np_n(x)f(q_n(x))## where ##p_n## and ##q_n## polynomials of degree ##2^n-1## and ##2^n##. If we can prove that ##\lim_{n->\infty}q_n(x)=0## then I think we got it.
 
Last edited:
  • #16
PeroK
Science Advisor
Homework Helper
Insights Author
Gold Member
2020 Award
17,074
8,869
Now, for any ##x_0 \in (-1,1)## the iterative scheme ##x_1 = x_0^2-1, x_2 = x_1^2 - 1, \ldots## converges to the negative solution of ##x = x^2-1##, which is ##\tau \equiv (1-\sqrt{r})/2 \doteq -0.61803##.

I found that this sequence converges alternatingly to ##0## and ##-1##.
 
  • #17
Delta2
Homework Helper
Insights Author
Gold Member
3,847
1,506
I found that this sequence converges alternatingly to ##0## and ##-1##.
That's only if you start with 0, 1 or -1. for any other x in (-1,1) it converges to -0.618...=##\frac{1-\sqrt{5}}{2}##.

Now I see clearly that the polynomial ##q_n(x)## in post #15 converges to -0.618.. for any x in (-1,0) or (0,1) and f(-0.618...)=0.
 
  • #18
PeroK
Science Advisor
Homework Helper
Insights Author
Gold Member
2020 Award
17,074
8,869
That's only if you start with 0, 1 or -1. for any other x in (-1,1) it converges to -0.618...=##\frac{1-\sqrt{5}}{2}##

Can you prove that? Try starting at 0.5, for example, and see what happens.
 
  • #19
Ray Vickson
Science Advisor
Homework Helper
Dearly Missed
10,706
1,722
Can you prove that? Try starting at 0.5, for example, and see what happens.

Yes, you are right. However, the basic limiting argument still holds: ##F(x_0) = F(x_n) ## for all ##n##, and for very large ##n## we have that ##x_n## is either ##0## or ##-1## (alternating). But since ##F(0) = F(-1) = 0## we have ##F(x_0) = 0##. That is for any ##x_0 \in (-1,1)## different from ##(1-\sqrt{5})/2.##
 
Last edited:
  • #20
Delta2
Homework Helper
Insights Author
Gold Member
3,847
1,506
Can you prove that? Try starting at 0.5, for example, and see what happens.

Well I ve got to eat my hat, seems you are right. But still the sequence ##f(q_n(x))## converges alternatingly to f(0) or f(-1) and since they are equal to 0, converges to zero.
 
  • #22
Delta2
Homework Helper
Insights Author
Gold Member
3,847
1,506
I think he is right but still your proof is mostly correct because ##F(x_{2n})## converges to ##F(0) ## and ##F(x_{2n+1})## converges to ##F(-1)## but ##F(0)=F(-1)=0##.
 
  • #23
Ray Vickson
Science Advisor
Homework Helper
Dearly Missed
10,706
1,722
And, yet:

0.5, -0.75, -0.4375, -0.8086, -0.34618, -0.88016 etc.

I edited the message to remove those incorrect statements, but you responded before I made the changes. Apparently, the version you responded to remains unchanged. As the edited version makes plain, the basic argument still goes through.
 
  • #24
WWGD
Science Advisor
Gold Member
5,517
4,188
Well, by repeatedly applying the IVT we have that f is continuous with infinitely-many zeros. Only non-zero function I know satisfies this is the distance function d(x,S) for ##S## a closed subspace ( of [-1,1] ). Can we exclude this ? (Yes) EDIT: Does anyone know of EDIT any other non-zero continuous function that can have infinitely-many zeros ( in a compact subset of Real line)? Obviously not a poly, but that does not narrow it too much. Maybe we can show the 0's are dense , then extending by continuity we can show the function is identically 0?

EDIT2: My bad, should have been obvious that a "contraction" of sinx or cosx would have produced an example:https://math.stackexchange.com/questions/48746/existence-of-non-constant-continuous-functions-with-infinitely-many-zeros
STILL, this gives us countably-many. Could we have uncountably-many zeros? This would imply the zero set would have a limit point in ##[-1,1]##, which excludes Complex-analytic functions ( if the function was analytic to start with ). Seems like a Baire-Cat -type argument could show it.
 
Last edited:
  • #25
Delta2
Homework Helper
Insights Author
Gold Member
3,847
1,506
Guys do you find my idea in post #15, further explained in post #20 as correct? My approach doesn't use integrals or derivatives or the fundamental theorem of calculus or IVT which I believe probably they aren't yet being taught to the OP...
 

Related Threads on Prove f(x) is zero in range [-1,1]

Replies
4
Views
5K
  • Last Post
Replies
1
Views
919
Replies
7
Views
708
Replies
4
Views
2K
Replies
1
Views
4K
Replies
11
Views
988
  • Last Post
Replies
13
Views
1K
  • Last Post
Replies
2
Views
2K
  • Last Post
Replies
2
Views
1K
Replies
13
Views
4K
Top