- 20,815
- 28,448
I haven't checked, but what happens at ##\xi = \dfrac{1}{2}(1-\sqrt{5})## with ##q_n(\xi)## and ##p_n(\xi)\,##?Delta² said:##q_n(x)## alternates but ##f(q_n(x))## converges because f(-1)=f(0)=0 .
I haven't checked, but what happens at ##\xi = \dfrac{1}{2}(1-\sqrt{5})## with ##q_n(\xi)## and ##p_n(\xi)\,##?Delta² said:##q_n(x)## alternates but ##f(q_n(x))## converges because f(-1)=f(0)=0 .
That's not my point. ##f(\xi)=0## directly follows from the defining equation. But the exclusion of ##\xi## might not be sufficient, because ##2^n (\xi \pm \varepsilon)^n## is also divergent and polynomials are continuous, so at first glance the construction looks unstable.Delta² said:you can prove another way ##f(\xi)=0## check post #8. We must exclude ##\xi## from this treatment and treat it as a special case.
I'm not saying it won't work, only that it requires more care. It's not obvious, at least to me, why it will work. I assume that some topological argument might be needed to make the step from iterations to the continuum. I would prefer a theorem before cases, but that's a personal view.Delta² said:even for x neighbouring to ##\xi## , ##2^np_n(x)## is totally different than ##2^n(\xi+-\epsilon)^n##. I don't think the limit ##\lim_{x->\xi}p_n(x)## for x any but not ##\xi## is equal to ##2^n(\xi+-\epsilon)^n##.
Delta² said:even for x neighbouring to ##\xi## , ##2^np_n(x)## is totally different than ##2^n(\xi \pm \epsilon)^n##.
jaus tail said:Aren't all continuous functions derivative? I'm not sure what's the difference. Sine and consine are continuous and differentiable. So i guess it should be true.
jaus tail said:We've only been taught of limits and derivatives and integration.
I tried using derivatives.
f(x) = 2x(f(x2-a))
Let f(x^2 - 1) = g(x)
So
f(x) = 2x g(x)
f'(x) = 2xg'(x) + 2g(x)
f'(x) = 2xf'(x)(2x) + 2f(x^2 - 1)
f'(x) (1-4x^2) = 2f(x^2 - 1)
So we get f'(x) = 2f(x^2 - 1)/(1-4x^2)
Now we got that f(-1) = f(1) = 0.
So if f(x) is non zero at any point between 1 and -1, then f'(x) must be positive some place and negative some place.
But above we see that f'(x) is an even function.
So f'(x) is not satisfying condition of positive and negative. It's either positive or negative and if it's one of them then it can have only 1 zero.
And so we can say that f(x) is constant at zero.
jaus tail said:So I guess we can take two conditions.
1) f(x) is differentiable then we can go with my solution.
and 2) f(x) is not differentiable. Any idea how to prove in this case?
jaus tail said:2) f(x) is not differentiable. Any idea how to prove in this case?
WWGD said:If you are using that to approximate ##f ## in ##[0,1]## then the limit should be finite, as continuous function in compact is bounded. But then you have a limit of the type ##\infty . \epsilon ## which should be dominated by ##\epsilon ## in order for the limit to be finite.
Delta² said:##2^np_n(x)## is dominated by ##p_n(x)## for any ##x\neq\xi## its ##\lim_{n->\infty}{p_n(x)}=0## and the convergence of ##p_n(x)## to 0 is such that it overcomes ##2^n##. I believe I prove this at post #28.