LanNguyen
- 2
- 0
Pls help me to prove the following inequality:
\begin{align*}
3 \left(\dfrac{a}{b} + \dfrac{b}{a} + \dfrac{b}{c} + \dfrac{c}{b} + \dfrac{a}{c} + \dfrac{c}{a}\right) &+ \left( 1 + a\right) \left( 1+b \right)\left( 1+c \right)\left(\dfrac{c}{b}+\dfrac{c}{a} \right) \left( \dfrac{b}{a}+\dfrac{b}{c} \right) \left( \dfrac{a}{b}+\dfrac{a}{c} \right) \\ & \geq 6abc+6+9(ab+bc+ac+a+b+c)+3\left( \dfrac{ab}{c} +\dfrac{bc}{a}+\dfrac{ac}{b}\right)
\end{align*}
with ##a, b, c## are positive reals
If it helps, I know the equality occurs when ##a=b=c=2## (although I'm not sure if it's the only one).
Also, can anyone helps to prove ##(2, 2, 2)## is the only point at which equality occurs.
Thanks a lot...
Any hint is appreciated...
\begin{align*}
3 \left(\dfrac{a}{b} + \dfrac{b}{a} + \dfrac{b}{c} + \dfrac{c}{b} + \dfrac{a}{c} + \dfrac{c}{a}\right) &+ \left( 1 + a\right) \left( 1+b \right)\left( 1+c \right)\left(\dfrac{c}{b}+\dfrac{c}{a} \right) \left( \dfrac{b}{a}+\dfrac{b}{c} \right) \left( \dfrac{a}{b}+\dfrac{a}{c} \right) \\ & \geq 6abc+6+9(ab+bc+ac+a+b+c)+3\left( \dfrac{ab}{c} +\dfrac{bc}{a}+\dfrac{ac}{b}\right)
\end{align*}
with ##a, b, c## are positive reals
If it helps, I know the equality occurs when ##a=b=c=2## (although I'm not sure if it's the only one).
Also, can anyone helps to prove ##(2, 2, 2)## is the only point at which equality occurs.
Thanks a lot...
Any hint is appreciated...
Last edited by a moderator: