rbzima
- 83
- 0
Homework Statement
Prove that \left(ab+cd\right)^{2} \leq \left(a^{2}+c^{2}\right)\left(b^{2}+d^{2}\right)
Homework Equations
None
The Attempt at a Solution
I've broken the LHS down to the following:
\left(ab\right)^{2}+2abcd+\left(cd\right)^{2}
The RHS:
\left(ab\right)^{2} + \left(ad\right)^{2} + \left(bc\right)^{2} + \left(cd\right)^{2}
So, ultimately... it works out that I need to show 2abcd \leq \left(ad\right)^{2} + \left(bc\right)^{2}
This is where I'm getting stuck... Any suggestions...