Prove Inequality using Mean Value Theorem

Khayyam89
Messages
7
Reaction score
0

Homework Statement


Essentially, the question asks to use the mean value theorem(mvt) to prove the inequality: abs(sina - sinb) \leq abs(a - b) for all a and b


The Attempt at a Solution



I do not have a graphing calculator nor can I use one for this problem, so I need to prove that the inequality basically by proof. What I did was to look at the mvt hypotheses: if the function is continuous and differetiable on closed and open on interval a,b, respectively. However, the problem I am having is that I am getting thrown off by the absolute values and the fact that I've never used mvt on inequalities. I know the absolute value of the sin will look like a sequence of upside-down cups with vertical tangents between them. Hints most appreciated.
 
Last edited:
Physics news on Phys.org
Assume a>b, then sina-sinb=(a-b)cosc, for some b<c<a, which gives the inequality with no problems.
 
Wait, are you considering that abs(...) = absolute value of the sum?
 
The mean value theorem tells you (sin(a)-sin(b))/(a-b)=sin'(c)=cos(c) for some c between a and b, as boombaby said. Take the absolute value of both sides and use that |cos(c)|<=1.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Back
Top