cse63146
- 435
- 0
Homework Statement
Prove: lim_{(x,y)\rightarrow (0.0)} \frac{x^4 y}{x^4 + y^2} = 0
Homework Equations
x = rcos(theta)
y= rsin(theta)
The Attempt at a Solution
since (x,y) are at the origin, I could use polar coordinates
lim_{(x,y)\rightarrow (0.0)} \frac{x^4 y}{x^4 + y^2} = lim_{(r)\rightarrow 0} \frac{r^4 cos^4 \vartheta r sin \vartheta}{r^4 cos^4 \vartheta + r^2 sin^2 \vartheta} = <br /> lim_{r \rightarrow 0} \frac{r^2 cos^4 \vartheta sin \vartheta}{r^2 cos^4 \vartheta + sin^2 \vartheta}
I got that far, but I'm not sure how to get rid of the r^2 in the denominator.
Last edited: