DrummingAtom
- 657
- 2
Homework Statement
If the rows of A are linearly dependent, prove that the rows of AB are also linearly dependent.
The Attempt at a Solution
A = \begin{pmatrix}a&-a\\b&-b\end{pmatrix} the rows are linearly dependent because a - a = 0 and b - b = 0.
B = \begin{pmatrix}c_1&c_2\\c_3&c_4\end{pmatrix}
ThenAB = \begin{pmatrix}a(c_1-c_3)&a(c_2-c_4)\\b(c_1-c_3)&b(c_2-c_4)\end{pmatrix} \; where\; c_1 \neq c_3\; and\; c_2 \neq c_4
But then wouldn't these rows now be linearly independent? Unless c_1 - c_3 = -(c_2 - c_4)
Thanks for any help.