MHB Prove $\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}\le 10$ w/ $a,b,c,d>0$

  • Thread starter Thread starter anemone
  • Start date Start date
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that if $a,\,b,\,c,\,d>0$ and $a\le 1,\,a+b\le 5,\,a+b+c\le 14,\,a+b+c+d\le 30$, then $\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}\le 10$.
 
Mathematics news on Phys.org
Did I miss something, or is this problem really quite easy to solve? Thankyou for any comment!

Given the conditions:

$a \leq 1 \;\;\wedge \;\;a+b \leq 5\;\; \wedge \;\;a+b+c\leq 14\;\; \wedge \;\; a+b+c+d \leq 30$

which by successive subtractions implies:

$a \leq 1 \;\;\wedge \;\;b \leq 4\;\; \wedge \;\;c\leq 9\;\; \wedge \;\; d \leq 16$

or:

$\sqrt{a} \leq 1 \;\;\wedge \;\;\sqrt{b} \leq 2\;\; \wedge \;\;\sqrt{c}\leq 3\;\; \wedge \;\; \sqrt{d} \leq 4$

Adding the four inequalities yields:

$\sqrt{a} +\sqrt{b} +\sqrt{c}+\sqrt{d} \leq 1+2+3+4 = 10.$
 
lfdahl said:
Did I miss something, or is this problem really quite easy to solve? Thankyou for any comment!

Given the conditions:

$a \leq 1 \;\;\wedge \;\;a+b \leq 5\;\; \wedge \;\;a+b+c\leq 14\;\; \wedge \;\; a+b+c+d \leq 30$

which by successive subtractions implies:

$a \leq 1 \;\;\wedge \;\;b \leq 4\;\; \wedge \;\;c\leq 9\;\; \wedge \;\; d \leq 16$

or:

$\sqrt{a} \leq 1 \;\;\wedge \;\;\sqrt{b} \leq 2\;\; \wedge \;\;\sqrt{c}\leq 3\;\; \wedge \;\; \sqrt{d} \leq 4$

Adding the four inequalities yields:

$\sqrt{a} +\sqrt{b} +\sqrt{c}+\sqrt{d} \leq 1+2+3+4 = 10.$
a = .2 b = 4.6 does not satisfy your consideration.
 
Thankyou for your comment. You´re right of course. I did miss something ... :(
 
anemone said:
Prove that if $a,\,b,\,c,\,d>0$ and $a\le 1,\,a+b\le 5,\,a+b+c\le 14,\,a+b+c+d\le 30$, then $\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}\le 10$.

Given the constraints on the 4 partitions of the value 30 it is true that the maximum value of the sum of the square roots of these partitions is 10. The problem is proving it.

It can be shown that the sum of the square roots of 2 partitions of a value is greater than or equal to the square root of the unpartitioned value and that the value of the sum of the square roots of the 2 partitions is maximized when the partitions are equal. The equation is:
$\sqrt{a}+\sqrt{b} = \sqrt{a+b+2\sqrt{ab}}$
let the value being partitioned = 1 then a+b=1 and b=a-1 and the equation becomes:
$\sqrt{a}+\sqrt{b} = \sqrt{1 + 2\sqrt{a(1-a)}}$
and it can be seen that as $a$ ranges from 0 to 1, the maximum value of the sum of the square roots of the two partitions is at $a$ = 1/2. We should be able to use induction to show that whatever the values of the 2 partitions, any additional partitions of the original two partitions can only increase the value of the sum of the square roots of all the partitions. Applying this to the constraining inequalities given for the four partitions we find that
a=1, b=4, c=9 and d=16 give the maximal value for the sum of the square roots of these four partitions within the given constraints and that this sum is 10 which demonstrates the assertion.
 
Last edited:
The function $f: (0,\,+\infty)\rightarrow (0,\,+\infty)$ defined by $f(x)=\sqrt{x}$ is concave, and therefore for any positive real numbers $k_1,\,k_2,\,\cdots, \,k_n$ such that $k_1+k_2+\cdots+k_n=1$, we have

$k_1f(x_1)+k_2f(x_2)+\cdots+k_nf(x_n)\le f(k_1x_1+k_2x_2+\cdots+k_nx_n)$

Now, take $n=4$ and $k_1=\dfrac{1}{10},\,k_2=\dfrac{2}{10},\,k_3=\dfrac{3}{10},\,k_4=\dfrac{4}{10}$. It follows that

$\dfrac{1}{10}\sqrt{a}+\dfrac{2}{10}\sqrt{\dfrac{b}{4}}+\dfrac{3}{10}\sqrt{\dfrac{c}{9}}+\dfrac{4}{10}\sqrt{\dfrac{d}{16}}\le \sqrt{\dfrac{a}{10}+\dfrac{b}{20}+\dfrac{c}{30}+\dfrac{d}{40}}$

or

$\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}\le 10\sqrt{\dfrac{12a+6b+4c+3d}{120}}$

But

$12a+6b+4c+3d=3(a+b+c+d)+(a+b+c)+2(a+b)+6a\le 3(30)+14+2(5)+6(1)=120$

and the claim is then proved.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
3
Views
1K
Replies
4
Views
2K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
7
Views
2K
Replies
6
Views
1K
Replies
1
Views
1K
Back
Top