Prove Statement: View Attachment

  • Context: MHB 
  • Thread starter Thread starter anil86
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on proving the statement involving the equation $$\sin\left(\theta+i\phi \right)=\tan(x)+i \sec(x)$$. By applying the angle-sum identity for sine, the contributors derive the relationships $$\sin(\theta)\cosh(\phi)=\tan(x)$$ and $$\cos(\theta)\sinh(\phi)=\sec(x)$$. Further exploration leads to the conclusion that $$\cos(2\theta)\cosh(2\phi)=3$$ through the use of double-angle identities and Pythagorean identities.

PREREQUISITES
  • Understanding of complex numbers and their properties
  • Familiarity with trigonometric identities, specifically angle-sum and double-angle identities
  • Knowledge of hyperbolic functions and their relationships
  • Ability to manipulate and simplify mathematical expressions
NEXT STEPS
  • Study the derivation and applications of angle-sum identities in trigonometry
  • Explore hyperbolic functions and their identities in depth
  • Learn about the relationship between trigonometric and hyperbolic functions
  • Investigate advanced topics in complex analysis, particularly involving sine and exponential functions
USEFUL FOR

Mathematicians, physics students, and anyone interested in advanced trigonometric identities and complex analysis will benefit from this discussion.

anil86
Messages
10
Reaction score
0

Attachments

  • Image0350.jpg
    Image0350.jpg
    80.1 KB · Views: 115
Mathematics news on Phys.org
We are given:

$$\sin\left(\theta+i\phi \right)=\tan(x)+i \sec(x)$$

Using the angle-sum identity for sine on the left, we have:

$$\sin(\theta)\cosh(\phi)+i \cos(\theta)\sinh(\phi)=\tan(x)+i \sec(x)$$

This implies:

$$\sin(\theta)\cosh(\phi)=\tan(x)$$

$$\cos(\theta)\sinh(\phi)=\sec(x)$$

Now, we have the following double-angle identities:

$$\cos(2\theta)=\cos^2(\theta)-\sin^2(\theta)$$

$$\cosh(2\phi)=\cosh^2(\phi)+\sinh^2(\phi)$$

Hence:

$$\cos(2\theta)\cosh(2\phi)=\cos^2(\theta)\cosh^2( \phi)+\cos^2(\theta)\sinh^2(\phi)- \sin^2(\theta)\cosh^2(\phi)- \sin^2(\theta)\sinh^2(\phi)$$

Using the implications we drew above, we may write:

$$\cos(2\theta)\cosh(2\phi)=\cos^2(\theta)\cosh^2( \phi)+\sec^2(x)-\tan^2(x)- \sin^2(\theta)\sinh^2(\phi)$$

Using a Pythagorean identity, there results:

$$\cos(2\theta)\cosh(2\phi)=\cos^2(\theta)\cosh^2( \phi)+1- \sin^2(\theta)\sinh^2(\phi)$$

Using Pythagorean identities, we have:

$$\cos(2\theta)\cosh(2\phi)=\left(1-\sin^2(\theta) \right)\cosh^2( \phi)+1-\left(1-\cos^2(\theta) \right)\sinh^2(\phi)$$

We may arrange this as follows:

$$\cos(2\theta)\cosh(2\phi)=1+\left(\cosh^2( \phi)-\sinh^2(\phi) \right)+\left(\cos^2(\theta)\sinh^2(\phi)- \sin^2(\theta)\cosh^2(\phi) \right)$$

Using the hyperbolic identity and our previous results, we then find:

$$\cos(2\theta)\cosh(2\phi)=1+1+1=3$$
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 30 ·
2
Replies
30
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K