Prove that a series converges.

  • Thread starter Thread starter anoncow
  • Start date Start date
  • Tags Tags
    Series
anoncow
Messages
4
Reaction score
0

Homework Statement


$$ \sum\limits_{n=1}^\infty \frac{1 - (-1)^n e}{1 + (n \pi)^2}$$

Homework Equations



The Attempt at a Solution


I'd imagine you have to use the comparison test on it but am unable to figure out where to start. Any suggestions would be greatly appreciated.
 
Last edited:
Physics news on Phys.org
Well indeed the comparison test will do (with 1/n^2).

I'll let you see how exactly.
 
Interesting sum, compare to 1/n^2
 
Is this sufficient proof?

http://mathb.in/1308?key=f6d1a50cb6e98de9513ed7740481e9387911e3ce
 
Last edited:
Much simpler than that:

|\frac{1-(-1)^ne}{1+(\pi n)^2}| \leq \frac{1+e}{1+(\pi n)^2}
 
MathematicalPhysicist said:
Much simpler than that:

|\frac{1-(-1)^ne}{1+(\pi n)^2}| \leq \frac{1+e}{1+(\pi n)^2}

oh so could i just have done:

0 \leq |\frac{1-(-1)^ne}{1+(\pi n)^2}| \leq |\frac{1}{n^2}|
\therefore \frac{1-(-1)^ne}{1+(\pi n)^2} absolutely converges.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top