Daggy
- 14
- 0
Homework Statement
Prove that for n> 1
<br /> \int\limits_{0}^{\infty}{\frac{1}{(x + \sqrt{x^2 + 1})^n}} \mathrm{d}x = \frac{n}{n^2 - 1} <br />
Homework Equations
The Attempt at a Solution
Tried substitute x = cosh theta, then
<br /> \frac{\mathrm{dx}}{\mathrm{d}\theta} = \sinh \theta<br />
<br /> \int\limits_{0}^{\infty}{\frac{1}{(x + \sqrt{x^2 + 1})^n}} \mathrm{d}x = \int\limits_{0}^{\infty}{\frac{\sinh{\theta}}{(\cosh{\theta} + \sinh{\theta})^n }<br />
I'm getting in the right direction here? I'm really stuck..
Last edited: