Prove that if f and g are integrable on [a, b], then so is fg

  • Thread starter Thread starter a1010711
  • Start date Start date
a1010711
Messages
8
Reaction score
0

The Attempt at a Solution



It suffices to show that f^2 is integrable, since

fg= [(f+g)^2-(f-g)^2]/4

The function x --> x^2 is uniformly continuous on the range of f,


im not sure how to turn this into a formal proof, I am lost


Riemann integration
 
Last edited:
Physics news on Phys.org
Which definition of integrability are you using?
 
a1010711 said:

The Attempt at a Solution



It suffices to show that f^2 is integrable, since

fg= [(f+g)^2-(f-g)^2]/4

The function x --> x^2 is uniformly continuous on the range of f,


im not sure how to turn this into a formal proof, I am lost


Riemann integration
You can't prove it, it's not true. For example, if f(x)= 1 if x is rational, -1 if x is irrational, the f2(x)= 1 so f2(x) is integrable on, say, [0, 1] but f is not. Also, if g(x)= 2, then g2(x)= 4 so is integrable on [0,1] but fg(x)= 2 if x is rational, -1 if x is irrational is not itegrable.
 
a1010711 said:

The Attempt at a Solution



It suffices to show that f^2 is integrable
What if you can find a function f that is integrable on [a,b] but not square integrable?

HallsofIvy said:
You can't prove it, it's not true.
That much is true.

For example, if f(x)= 1 if x is rational, -1 if x is irrational ...
That's fine, but the title of the thread is "Prove that if f and g are integrable on [a, b], then so is fg", so you are picking some f that violates the given conditions.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top