Prove that lim sup(x_n) = max(lim sup(y_n), lim sup(z_n))

  • Thread starter Thread starter drawar
  • Start date Start date
drawar
Messages
130
Reaction score
0

Homework Statement


Let (x_{n}) be a bounded sequence. For each n \in \mathbb{N}, let y_{n}=x_{2n} and z_{n}=x_{2n-1}. Prove that
\lim \sup {x_n} = \max (\lim \sup {y_n},\lim \sup {z_n})


Homework Equations





The Attempt at a Solution



Don't know if I'm at the right path but I've tried letting M= \lim \sup {x_n}, M_{1}= \lim \sup {y_n}, and M_{2} = \lim \sup {z_n} and see that M \geq \max (M_{1}, M_{2}). How do I proceed from here to prove that M = \max (M_{1}, M_{2})? Thank you!
 
Physics news on Phys.org
Does this observation help?
$\sup {x_n} = \max (\sup {y_n},\sup {z_n})$
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top