Portuga
- 56
- 6
Homework Statement
prove that
<br /> <br /> \lim_{x\rightarrow 0} \sin \left( \frac{1}{x} \right)<br /> <br /> doesn't exist.
Homework Equations
<br /> \lim_{x\rightarrow0}\sin\left(\frac{1}{x}\right)=\lim_{u\rightarrow\infty}\sin u<br />
The Attempt at a Solution
My strategy to solve this problem is to make u \rightarrow \infty through different paths and show that the limits are different.
So, first one is a_{u}=\frac{\pi}{2}+2\pi u,\,u\in\mathbb{N}. Second one is <br /> b_{u}=u\pi,\,u\in\mathbb{N}.
Both these have the same behavior as u \rightarrow \infty:
<br /> <br /> \lim_{u\rightarrow\infty}a_{u}=\lim_{u\rightarrow\infty}b_{u}=\infty.<br /> <br />
For with first one,
<br /> \begin{aligned}\lim_{u\rightarrow\infty}\sin a_{u} & =\lim_{u\rightarrow\infty}\sin\left(\frac{\pi}{2}+2\pi u\right)\\ & =\lim_{u\rightarrow\infty}\sin\left(\frac{\pi}{2}\right)\cos2\pi u+\sin2\pi u\cos\left(\frac{\pi}{2}\right)\\ & =\lim_{u\rightarrow\infty}\sin\left(\frac{\pi}{2}\right)\cos2\pi u+\lim_{u\rightarrow\infty}\sin2\pi u\cos\left(\frac{\pi}{2}\right)\\ & =\lim_{u\rightarrow\infty}\cos2\pi u+\lim_{u\rightarrow\infty}\sin2\pi u\cos\left(\frac{\pi}{2}\right). \end{aligned}<br />
The limit <br /> \lim_{u\rightarrow\infty}\sin2\pi u\cos\left(\frac{\pi}{2}\right)<br /> tends to 0, as <br /> \cos\left(\frac{\pi}{2}\right)<br /> tends to 0, and <br /> \sin2\pi u<br /> is limited both upper and lower bound.
Therefore, <br /> \lim_{u\rightarrow\infty}\sin a_{u}=1.<br />
Now, <br /> \lim_{u\rightarrow\infty}\sin b_{u}=\lim_{u\rightarrow\infty}\sin u\pi=0,<br /> as, \forall u, u\pi is an multiple of \pi, which \sin is null.
Then, <br /> \lim_{u\rightarrow\infty}\sin b_{u}=0.<br />
Because of these two different results for different paths, it's true that <br /> \nexists\lim_{x\rightarrow0}\sin\frac{1}{x}.<br />
Am I correct?
Thanks in advance!
Last edited: