How long would it take you to try every even integer?
Even if you did that you would have proved the wrong thing. Your example is an example that "if n is even then 8 does not divide evenly into n^2- (n-2)^2". What you are asked to prove is the converse of that: "if 8 does not divide evenly into n^2- (n-2)^2, then n is even". "If A then B" is not the same as "If B then A".
What you could do is prove the contrapositive. "If A then B" is the same as the contrapositive, "if NOT B then NOT A". Here that would be "if n is NOT even, then 8 does NOT divide n^2- (n-1)^2". If n is not even, it is odd: n= 2m+1 for some integer m. Then n^2= (2m+1)^2= 4m^2+ 4m+ 1 and n- 1= 2m+1-1= 2m so (n-1)^2= (2m)^2= 4m^3. n^2- (n-1)^2= 4m+ 1. Now there are 2 posibilities: either m itself is even, in which case 4m+ 1= 8k+ 1 for some k and 8k always has a remainder of 1 when divided by 8 or m is odd, in which case 4m+ 1= 4(2k+1)+ 1= 8k+ 5 which has a remainder of 5 when divided by 8.