Prove the typewriter sequence does not converge pointwise.

  • Thread starter Thread starter wrolsr
  • Start date Start date
  • Tags Tags
    Sequence
wrolsr
Messages
2
Reaction score
0
(Typewriter sequence) Consider the following sequence of functions on [0,1]. Let f1= X[0, 1\2], f2= X[1\2, 1], f3= X[0, 1\4], f4= X[1/4, 1\2], f5= X[1\2, 3/4], f6= X[3/4, 1], f7= X[0, 1\8], etc. Where X is the Characteristic function.

(a) Prove that fn does not converge for any x in [0,1].

(b) Show that this sequence of functions is a counterexample to the statement:
If for all n, fn and f are non-negative functions on E (with λ(E)<∞) and for all A contained in E, ∫A[\sub]fn dλ, then fn converges to f Lebesgue almost everywhere.
Attempt at solution: assume that lim n→∞fn(y)=0, which means that for all ϵ>0 there is an N, such that for all n > N, fn(y)<ϵ.
 
Last edited:
Physics news on Phys.org
wrolsr said:
(Typewriter sequence) Consider the following sequence of functions on [0,1]. Let f1= X[0, 1\2], f2= X[1\2, 1], f3= X[0, 1\4], f4= X[1/4, 1\2], f5= X[1\2, 3/4], f6= X[3/4, 1], f7= X[0, 1\8], etc. Where X is the Characteristic function.

(a) Prove that fn does not converge for any x in [0,1].

(b) Show that this sequence of functions is a counterexample to the statement:
If for all n, fn and f are non-negative functions on E (with λ(E)<∞) and for all A contained in E, ∫A[\sub]fn dλ, then fn converges to f Lebesgue almost everywhere.



Attempt at solution: assume that lim n→∞fn(y)=0, which means that for all ϵ>0 there is an N, such that for all n > N, fn(y)<ϵ.


That's not much of an attempt. Can you explain in words why fn does not converge for any x in [0,1]?
 
I suggest drawing the graph for each of the functions and you should be able to see what is happening and why fn(x) does not converge for any x.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top