Proving a formula with binomial coefficient when n=-1

Seydlitz
Messages
262
Reaction score
4

Homework Statement



Prove that ##\binom{-1}{k}=(-1)^k##

The Attempt at a Solution



Using induction on ##k##,

##\binom{-1}{0}=1## which is true also for ##(-1)^0=1##

Assuming ##\binom{-1}{k}=(-1)^k##, then ##\binom{-1}{k+1}=(-1)^{k+1}##

Indeed when ##n=-1##, we can write rewrite this ##\frac{n!}{k!(n-k)!}## as ##\frac{(-1)^k(k)!}{k!}## to avoid negative factorial. Hence ##\binom{-1}{k+1}=\frac{(-1)^k(k+1)!}{(k+1)!}=(-1)^{k+1}##.

##\blacksquare##

I just want to confirm if my proof by induction method is valid.

Thank You
 
Physics news on Phys.org
UltrafastPED said:
You should recast the combinatorials in terms of gamma functions before your start.

See http://mathworld.wolfram.com/BinomialCoefficient.html

This exercise is taken from Boas Mathematical Methods in Physics Chapter 1, the readers haven't been exposed to Gamma function nor does the problem actually requires one to prove the statement. It only requires one to show but I just want to prove it if possible using simple induction.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top