(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

So, given a metric d : X x X --> R, prove that d is continuous.

3. The attempt at a solution

Let (x, y) be a point in X x X, V = <a, b> a neighborhood of d(x, y). One needs to find a neighborhood of U of (x, y) such that d(U) is contained in V. U is of the form U1 x U2, where U1 is a neighborhood of x, and U2 a neighborhood of y. I claim that every union U of two open balls B1(x, r1) and B2(y, r2), where 2(r1 + r2) = b - a, must satisfy d(U) [tex]\subseteq[/tex] <a, b>.

The diameter of B1 is 2r1, and the diameter of B2 is 2r2. The diameter of their union is b = a + 2r1 + 2r2, where a is the distance between B1 and B2.

Does this work?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Proving a metric is continuous

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**