sunrah
- 191
- 22
Homework Statement
Show that the eigenfunction of Lx can be written as a combination of eigenfunctions from Lz with the same l but different m. Using the eigenfunction
Y_{x} = \frac{1}{\sqrt{2}}(Y^{-1}_{1} - Y^{1}_{1}) as the eigenfunction of Lx
Homework Equations
Y^{m}_{l} = \frac{1}{\sqrt{2 \pi}}e^{im\varphi} eigenfunction of Lz
L_{z}Y^{m}_{l}= l Y^{m}_{l}
The Attempt at a Solution
Y_{x} = \frac{1}{\sqrt{2}}(Y^{-1}_{1} - Y^{1}_{1}) = \frac{1}{\sqrt{4\pi}}(e^{-i\varphi} - e^{i\varphi})
\widehat{L}_{x} = i \frac{h}{2\pi}(sin\theta \frac{d}{d\varphi} + cot\theta cos\varphi\frac{d}{d\varphi})
\widehat{L}_{x}Y_{x} = i \frac{h}{2\pi}cot\theta cos\varphi\frac{d}{d\varphi}\frac{1}{\sqrt{4\pi}}(e^{-i\varphi} - e^{i\varphi})
\widehat{L}_{x}Y_{x} = \frac{h}{2\pi}cot\theta cos\varphi\frac{1}{\sqrt{4\pi}}(e^{-i\varphi} + e^{i\varphi}) ≠ lY_{x}
can't see where I'm going wrong