Proving an Equivalence Relation on Real Numbers

Click For Summary
SUMMARY

The discussion focuses on proving that the relation R defined on real numbers, where xRy if |x - y| is an even integer, is an equivalence relation. The three properties of equivalence relations—reflexivity, symmetry, and transitivity—are explored in detail. Reflexivity is established by showing |x - x| = 0, which is even. Symmetry is demonstrated by proving that if |x - y| is even, then |y - x| is also even. The transitivity property is suggested as the most challenging to prove, requiring further exploration.

PREREQUISITES
  • Understanding of equivalence relations in mathematics
  • Familiarity with absolute value properties
  • Basic knowledge of integers and even numbers
  • Experience with mathematical proofs and logical reasoning
NEXT STEPS
  • Study the properties of equivalence relations in more depth
  • Learn about mathematical proof techniques, particularly for transitive relations
  • Explore examples of equivalence relations in different mathematical contexts
  • Practice proving properties of relations using specific examples
USEFUL FOR

Mathematicians, students studying abstract algebra, and anyone interested in understanding equivalence relations and their applications in mathematics.

barbara
Messages
10
Reaction score
0
I know that
1. To show the relation is reflexive, we need to show that for any x, using the definition of R, we have xRx. The definition of R means that we must have |x - x| is even.2. To show that R is symmetric, we would have to show that if xRy then yRx. In the context of the definition we would need to show that if |x - y| is even, then |y - x| is even.3. Show that R is transitive, we need to show that if |x-y| is even and |y-z| is even, then |x - z| is even. This part is probably the hardest to work through.

But what I can't do is look at this in the context of this specific example. I am totally lost trying to define the following relation on the set of real numbers

xRy if |x - y| is an even integer and how that R is an equivalence relation
 
Physics news on Phys.org
Any relation that is reflexive, symmetric and transitive is *by definition* an equivalence relation.

Ok, so suppose $|x - y|$ is even. What is an even integer? It is one divisible by $2$, so we can write:

$|x - y| = 2k$, where $k$ is an integer (we don't actually need to know *which* integer $k$ is, just that there is one).

Now, for $xRy \iff |x - y| = 2k$ (for some integer $k$), we ask ourselves: is it also true that for any such pair $(x,y)$ that:

$|y - x| = 2k'$ (we don't know that $k'$ is the same as $k$-it might be, it might not be).

Let's break it down into cases:

Case 1: $x > y$.

In this case,$ x - y > 0$, so $|x - y| = x - y$.

Now, when we look at $|y - x|$, we see that $y - x < 0$, so (by the definition of absolute value):

$|y - x| = -(y - x) = -y -(-x) = -y + x = x - y$. Since (by assumption of $xRy$) $|x - y| = 2k$, we see that:

$|y - x| = x - y = |x - y| = 2k$, as well, so this, too, is an even integer, just like $|x - y|$ is. That settles the case $x > y$.

Case 2: $x = y$. In this case, $|x - y| = |x - x| = |0| = 0$. This is, of course, an even integer, since $0 = 2\cdot 0$.

In this case, we also have $|y - x| = |y - y| = 0$, as well, so in this case, too, we see $R$ is symmetric.

Case 3: left to you.

A "faster" way to show that $R$ is symmetric is to observe that $|x - y| = |y - x|$ (Do you believe this? Can you prove it?).

Try to work through just this "symmetric" bit, when you're convinced in your heart-of-hearts that this relation really and truly IS symmetric, we'll move on to transitivity.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
2K
  • · Replies 22 ·
Replies
22
Views
5K
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K