Seydlitz
- 262
- 4
Homework Statement
Prove Bernoulli's Inequality: if ##h>-1##
(1+h)^n \geq 1+hn
Homework Equations
Binomial Theorem
(a+b)^n=\sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^{k}
The Attempt at a Solution
If ##h=0##
(1+0)^n=1
1=1
If ##h>0##
This
(1+h)^n \geq 1+hn
Implies
(1+h)^n=\sum_{k}^{n}\binom{n}{k}h^{k}
\sum_{k=2}^{n}\binom{n}{k}h^{k} \geq 0
So the proof is done.