Proving completeness of a metri space X

  • Thread starter Thread starter radou
  • Start date Start date
  • Tags Tags
    Space
radou
Homework Helper
Messages
3,148
Reaction score
8

Homework Statement



I feel there's something wrong with my solution, so I'd like to check it tout.

Let X be a metric space and suppose that there exists some ε > 0 such that every ε-ball in X has a compact closure. Show that X is complete.

(btw, it would be enough, in the formulation of the problem to assume that every ε-ball in X is compact, since X is Hausdorff, and compact subspaces are closed, right?)

The Attempt at a Solution



So, let xn be a Cauchy sequence in X. Choose ε > 0 such that every ε-ball has a compact closure. Choose N such that for any n, m >= N, we have |xn - xm| < ε. Hence, there exists an ε-ball containing all but finitely many members of the sequence xn. For this finite number of members of the sequence, choose for each an ε- ball containing it. Now, a finite union of such compact ε-balls is compact, and hence sequentially compact. So, xn has a convergent subsequence, so X is complete. (actually, more precisely, the union of the ε-balls is complete, but since they are a subspace of X, and we have chosen a Cauchy sequence in X, we arrived at a convergent subsequence in X again, hence I concluded that X is complete=

Thanks in advance, but for some reason, after dealing with more abstract issues, I feel a but unsure about metric spaces. :biggrin:
 
Physics news on Phys.org
radou said:
Let X be a metric space and suppose that there exists some ε > 0 such that every ε-ball in X has a compact closure. Show that X is complete.

(btw, it would be enough, in the formulation of the problem to assume that every ε-ball in X is compact, since X is Hausdorff, and compact subspaces are closed, right?)
This would be a stronger assumption, since "is compact" implies "has compact closure".

radou said:
Choose N such that for any n, m >= N, we have |xn - xm| < ε. Hence, there exists an ε-ball containing all but finitely many members of the sequence xn.
I think you need to choose |xn - xm| < ε/2, and use the triangle inequality to prove that your conclusion holds.

radou said:
For this finite number of members of the sequence, choose for each an ε- ball containing it. Now, a finite union of such compact ε-balls is compact, and hence sequentially compact. So, xn has a convergent subsequence, so X is complete. (actually, more precisely, the union of the ε-balls is complete, but since they are a subspace of X, and we have chosen a Cauchy sequence in X, we arrived at a convergent subsequence in X again, hence I concluded that X is complete=
I would add a few words to explain why "has a convergent subsequence" and "is a Cauchy sequence" implies "is convergent". Also, you didn't prove that the union of the ε-balls is complete. You proved that the union of their closures is.

So your proof contains a couple of inaccurate (but easily fixed) statements, and a couple that should be clarified, but as far as I can tell it will be a correct proof when you have fixed those issues.
 
Fredrik, thanks for the reply. I'll go step by step.

Fredrik said:
This would be a stronger assumption, since "is compact" implies "has compact closure".

Of course, it would be stronger, but it still implies that the closure would need to be compact, since a compact subspace of a Hausdorff space is necessarily closed.

Fredrik said:
I think you need to choose |xn - xm| < ε/2, and use the triangle inequality to prove that your conclusion holds.

OK, I'm interested if this statement holds:

If xn is a Cauchy sequence, choose N such that whenever m, n >= N, |xm - xn| < ε holds. Now, choose an ε-ball around xN. Then all but finitely many members of the sequence lie in that ε-ball, right?
 
So, if this is correct, then for every member of the sequence (the number of such members is finite) which doesn't lie is the ball B(xN, ε), choose an ε-ball containing it. The union of the closures of these ε-balls, along with B(xN, ε), is compact. By Theorem 28.1. (Munkres), compactness of this set implies its sequential compactness, hence our sequence xn has a convergent subsequence. By Lemma 43.1., X is complete.
 
radou said:
Of course, it would be stronger, but it still implies that the closure would need to be compact, since a compact subspace of a Hausdorff space is necessarily closed.
Now that I think about it (more than before), what I should have said is that the alternative assumption doesn't really make sense. An ε-ball is an open ball with radius ε, right? So we can't assume that it's compact, because that would imply that it's also closed. A non-empty proper subset of a metric space can be both open and closed, but only if the space is disconnected. For example, if our space is the union of the open balls with radius 1 around (1,0) and (-1,0) in ℝ2 with the metric inherited from the standard metric on ℝ2, then those two open balls would be both open and closed. However, I don't know a way to make sense of the assumption that all open balls (or even all ε-balls with a specific value of ε) are compact.

radou said:
OK, I'm interested if this statement holds:

If xn is a Cauchy sequence, choose N such that whenever m, n >= N, |xm - xn| < ε holds. Now, choose an ε-ball around xN. Then all but finitely many members of the sequence lie in that ε-ball, right?
Ah, yes, that was a mistake on my part.

radou said:
So, if this is correct, then for every member of the sequence (the number of such members is finite) which doesn't lie is the ball B(xN, ε), choose an ε-ball containing it. The union of the closures of these ε-balls, along with B(xN, ε), is compact. By Theorem 28.1. (Munkres), compactness of this set implies its sequential compactness, hence our sequence xn has a convergent subsequence. By Lemma 43.1., X is complete.
Looks good.
 
Fredrik said:
Now that I think about it (more than before), what I should have said is that the alternative assumption doesn't really make sense. An ε-ball is an open ball with radius ε, right? So we can't assume that it's compact, because that would imply that it's also closed. A non-empty proper subset of a metric space can be both open and closed, but only if the space is disconnected. For example, if our space is the union of the open balls with radius 1 around (1,0) and (-1,0) in ℝ2 with the metric inherited from the standard metric on ℝ2, then those two open balls would be both open and closed. However, I don't know a way to make sense of the assumption that all open balls (or even all ε-balls with a specific value of ε) are compact.

Yes, I agree with you... It seems it wouldn't make sense.

Fredrik said:
Ah, yes, that was a mistake on my part.


Looks good.

OK, thanks!
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top