Proving convergence of factorial w/o Ratio Test

mvpshaq32
Messages
28
Reaction score
0

Homework Statement


Determine whether 1/n! diverges or converges.
So far, we have only learned the comparison tests, p-series, geometric series, divergence test, and integral test, so I can only use these tests to prove it.


Homework Equations



N/a

The Attempt at a Solution



I thought about using limit comparison with my b_n=1/n^n, but I can't determine if that converges or not, so I don't know what to do.
 
Physics news on Phys.org
Why did you choose b_n = 1/n^n? Why not a simpler series that you know converges or diverges?
 
The Comparison Test is your friend
 
It should be clear that for n> 3, n^2> n!.
 
HallsofIvy said:
It should be clear that for n> 3, n^2> n!.

I think you meant 2^n < n! ? Easy typo to make.

Oops, it's 2^(n-1) < n!
 
It's monotonic, so if you show that it is bounded, you're in business. Now by the comparison test, we have n!>n^2 for sufficiently large n, so take reciprocals and go from there.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Replies
4
Views
1K
Replies
3
Views
1K
Replies
6
Views
1K
Replies
2
Views
2K
Replies
1
Views
1K
Replies
14
Views
2K
Replies
5
Views
1K
Replies
4
Views
2K
Back
Top