MHB Proving Degrees of Vertices in Graph G

  • Thread starter Thread starter Amer
  • Start date Start date
  • Tags Tags
    Degrees Graph
AI Thread Summary
In a graph G of order \(2n+1 \geq 5\), the degree of each vertex is either \(n+1\) or \(n+2\). The discussion revolves around proving that G must contain at least \(n+1\) vertices of degree \(n+2\) or at least \(n+2\) vertices of degree \(n+1\). An argument by contradiction is suggested, where assuming fewer vertices of each degree leads to a contradiction when counting edges. The conclusion is that the initial conditions cannot hold true without satisfying the degree requirements. Thus, the proof demonstrates the necessity of the stated vertex degree distribution in graph G.
Amer
Messages
259
Reaction score
0
The degree of every vertex of a graph G of order \[2n+1 \geq 5\] is either n+1 or n+2. Prove that G contains at least n+1 vertices of degree n+2 or at least n+2 vertex
 
Last edited:
Mathematics news on Phys.org
Is this question complete? It seems truncated.
 
The degree of every vertex of a graph G of order \[2n+1 \geq 5\] is either n+1 or n+2. Prove that G contains at least n+1 vertices of degree n+2 or at least n+2 vertex of degree n+1
 
Amer said:
The degree of every vertex of a graph G of order \[2n+1 \geq 5\] is either n+1 or n+2. Prove that G contains at least n+1 vertices of degree n+2 or at least n+2 vertices of degree n+1
Try using an argument by contradiction. Suppose that there are $x$ vertices of degree $n+1$, and $y$ vertices of degree $n+2$, and suppose that the result is false. Then $x\leqslant n+1$ and $y\leqslant n$. But $x+y=2n+1$. It follows that we must have $x=n+1$ and $y=n.$ By counting the number of edges in the graph, show that this leads to a contradiction.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top