Proving Division of Local Ring in Ring with Idempotents

xixi
Messages
21
Reaction score
0
Let R be a ring . Suppose that e and f=1-e are two idempotent elements of R and we have R=eRe \oplus fRf (direct sum ) and R doesn't have any non-trivial nilpotent element . Set R_1=eRe and R_2=fRf . If R_1=\{0,e\} and R_2 is a local ring , then prove that R_2 is a division ring . (note that e and f are central idempotents and therefore fRf=fR )
 
Last edited by a moderator:
Physics news on Phys.org
I.) ##ef=e(1-e)=e-e^2=e-e=0## and ##fe=(1-e)e=e-e^2=e-e=0##

II.) With ##R=\{\,0,e\,\}\oplus fRf## we have for elements ##p=frf## by (I) that ##ep=0=pe## and for elements ##p=e+frf## we get ##ep=e^2+efrf=e^2=e=(e+frf)e=pe##, hence ##e \in R## is central. But ##fr=(1-e)r=r-er=r-re=r(1-e)=rf## so ##f\in R## is also central. Thus ##R=\{\,0,e\,\}\oplus fR##.

III.) If ##f## is no unit in ##R_2## then ##1-f=e \in R_2## is a unit by locality. Now ##e\in R## is also a unit, but ##ef=0##. So ##f=0## and ##e=1##.
If ##f## is a unit, then by ##ef=0## we get ##e=0## and ##f=1##.
Thus the only possibilities are ##(e,f)\in\{\,(1,0)\, , \,(0,1)\,\}##.

IV.) If ##f=0##, then ##R=R_1\oplus R_2=\{\,0,1\,\}\oplus \{\,0\,\} = \mathbb{Z}_2## is a field, and ##R_2=\{\,0\,\}##. Hence we have ##f=1## and ##e=0##, i.e. ##R=R_1\oplus R_2=\{\,0\,\}\oplus R_2=R_2##.
The nilradical of ##R## is zero, so the intersection of all prime ideals of ##R## is zero.
The Jacobson radical ##J(R)##, the intersection of all maximal ideals of ##R##, is zero if ##R## is a division ring. For a local ring ##R## we have that ##R/J(R)## is a division ring. So all comes down to show that ##J(R)=\{\,0\,\}##.

However, as I see it, this needs additional information which we do not have, e.g. ##R## could be left-Artinian.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top