Dustinsfl
- 2,217
- 5
Let A be a diagonalizable matrix whose eigenvalues are all either 1 or -1. Show that A^{-1}=A.
A=X\begin{bmatrix}<br /> \pm 1 & \cdots & 0 \\<br /> \vdots & \ddots & \vdots \\ <br /> 0 & \cdots & \pm 1<br /> \end{bmatrix}X^{-1}<br /> and A^{-1}=X\begin{bmatrix}<br /> \pm 1 & \cdots & 0 \\<br /> \vdots & \ddots & \vdots \\ <br /> 0 & \cdots & \pm 1<br /> \end{bmatrix}^{-1}X^{-1}<br />
How do I show they are equal?
A=X\begin{bmatrix}<br /> \pm 1 & \cdots & 0 \\<br /> \vdots & \ddots & \vdots \\ <br /> 0 & \cdots & \pm 1<br /> \end{bmatrix}X^{-1}<br /> and A^{-1}=X\begin{bmatrix}<br /> \pm 1 & \cdots & 0 \\<br /> \vdots & \ddots & \vdots \\ <br /> 0 & \cdots & \pm 1<br /> \end{bmatrix}^{-1}X^{-1}<br />
How do I show they are equal?