Proving Equivalence of 1-1 Function Statements

  • Thread starter Thread starter Incand
  • Start date Start date
  • Tags Tags
    Proof Range
Incand
Messages
334
Reaction score
47

Homework Statement


Let ##f:S\to T## be a given function. Show the following statements are equivalent:
a) ##f## is 1-1
b) ##f(A\cap B) = f(A) \cap f(B),\; \forall A,B \in S##
c) ##f^{-1}(f(A)) = A,\; \forall A \subseteq S.##

Homework Equations


Definition:
##f## is 1-1 of ##A## into ##B## provided that ##f(x_1) \ne f(x_2)## whenever ##x_1 \ne x_2, \; \; \; x_1,x_2 \in A##.

Definitions:
Let ##f## is a mapping ##f:A \to B##:
If ##E \subseteq A## then ##f(E)## is the set of all elements ##f(x)## with ##x \in E##.
If ##E \subseteq B## then ##f^{-1}(E)## denotes the set of all ##x\in A## such that ##f(x) \in E##.

The Attempt at a Solution


I think I'm able to prove a) ##\Longrightarrow## b) and a) ##\Longrightarrow## c) but I can't complete the rest.
Lets first prove the general statement ##A \subseteq f^{-1}(f(A))## :
Take ##\alpha \in A## then ##f(\alpha) \in f(A)## and hence ##\alpha \in f^{-1}(f(A))##.

We can also prove that ##f(A \cap B) \subseteq f(A) \cap f(B)##:
Take ##\alpha \in f(A \cap B)## that means ##\alpha = f(z)## for some ##z\in A \cap B## and hence ##\alpha \in f(A)\cap f(B)##.

It's left to prove the equivalence between
a) ##f## is 1-1
b) ## f(A) \cap f(B) \subseteq f(A\cap B),\; \forall A,B \in S##
c) ##f^{-1}(f(A)) \subseteq A,\; \forall A \subseteq S.##
a) ##\Longrightarrow## b)
Take ##\alpha \in f(A) \cap f(B)## then ##\alpha = f(z_1), \; z_1 \in A## and ##\alpha = f(z_2), \; z_2 \in B##. But since ##f## is 1-1 ##z_1 = z_2## hence ##\alpha \in f(A \cap B)## and ## f(A) \cap f(B) \subseteq f(A\cap B)##.

a) ##\Longrightarrow## c)
Take ##\alpha \in f^{-1}(f(A))## that is ##z = f(\alpha)## for some ##z\in B##. That is
##f(\alpha) \in f(A)## hence ##f(\beta) = z## for some ##\beta \in A## but since ##f## is 1-1 this means ##\alpha = \beta## and ##\beta \in A## so ##f^{-1}(f(A)) \subseteq A##.

To complete the proof I need to either show that c) ##\Longrightarrow## a) and b) ##\Longrightarrow## c) OR show that c) ##\Longrightarrow## a) and b) ##\Longrightarrow## a).

c) ##\Longrightarrow## a)
It's equivalent to show the contrapositive that ##f(x_1) = f(x_2) \Longrightarrow x_1 = x_2##. Take ##x_1, x_ 2 \in A## so that ##f(x_1)= f(x_2)## then by c) ##x_1,x_2 \in f^{-1}(f(A))##. This means that ##z_1 = f(x_1)## and ##z_2 = f(z_2)## for ##z_1,z_2 \in B## but from the premise ##z_1 = z_2##.

I don't seem to get anywhere with the last part nor any luck with any of the other equivalences. Any hints on how to go about it? I'm also wondering If what I've done so far is correct?
 
Physics news on Phys.org
Incand said:

Homework Statement


Let ##f:S\to T## be a given function. Show the following statements are equivalent:
a) ##f## is 1-1
b) ##f(A\cap B) = f(A) \cap f(B),\; \forall A,B \in S##
c) ##f^{-1}(f(A)) = A,\; \forall A \subseteq S.##

Homework Equations


Definition:
##f## is 1-1 of ##A## into ##B## provided that ##f(x_1) \ne f(x_2)## whenever ##x_1 \ne x_2, \; \; \; x_1,x_2 \in A##.

Definitions:
Let ##f## is a mapping ##f:A \to B##:
If ##E \subseteq A## then ##f(E)## is the set of all elements ##f(x)## with ##x \in E##.
If ##E \subseteq B## then ##f^{-1}(E)## denotes the set of all ##x\in A## such that ##f(x) \in E##.

The Attempt at a Solution


I think I'm able to prove a) ##\Longrightarrow## b) and a) ##\Longrightarrow## c) but I can't complete the rest.
Lets first prove the general statement ##A \subseteq f^{-1}(f(A))## :
Take ##\alpha \in A## then ##f(\alpha) \in f(A)## and hence ##\alpha \in f^{-1}(f(A))##.

We can also prove that ##f(A \cap B) \subseteq f(A) \cap f(B)##:
Take ##\alpha \in f(A \cap B)## that means ##\alpha = f(z)## for some ##z\in A \cap B## and hence ##\alpha \in f(A)\cap f(B)##.

It's left to prove the equivalence between
a) ##f## is 1-1
b) ## f(A) \cap f(B) \subseteq f(A\cap B),\; \forall A,B \in S##
c) ##f^{-1}(f(A)) \subseteq A,\; \forall A \subseteq S.##
a) ##\Longrightarrow## b)
Take ##\alpha \in f(A) \cap f(B)## then ##\alpha = f(z_1), \; z_1 \in A## and ##\alpha = f(z_2), \; z_2 \in B##. But since ##f## is 1-1 ##z_1 = z_2## hence ##\alpha \in f(A \cap B)## and ## f(A) \cap f(B) \subseteq f(A\cap B)##.

a) ##\Longrightarrow## c)
Take ##\alpha \in f^{-1}(f(A))## that is ##z = f(\alpha)## for some ##z\in B##. That is
##f(\alpha) \in f(A)## hence ##f(\beta) = z## for some ##\beta \in A## but since ##f## is 1-1 this means ##\alpha = \beta## and ##\beta \in A## so ##f^{-1}(f(A)) \subseteq A##.

To complete the proof I need to either show that c) ##\Longrightarrow## a) and b) ##\Longrightarrow## c) OR show that c) ##\Longrightarrow## a) and b) ##\Longrightarrow## a).

c) ##\Longrightarrow## a)
It's equivalent to show the contrapositive that ##f(x_1) = f(x_2) \Longrightarrow x_1 = x_2##. Take ##x_1, x_ 2 \in A## so that ##f(x_1)= f(x_2)## then by c) ##x_1,x_2 \in f^{-1}(f(A))##. This means that ##z_1 = f(x_1)## and ##z_2 = f(z_2)## for ##z_1,z_2 \in B## but from the premise ##z_1 = z_2##.

I don't seem to get anywhere with the last part nor any luck with any of the other equivalences. Any hints on how to go about it? I'm also wondering If what I've done so far is correct?
a) ⇒ b) and a) ⇒ c) are correct.
I don't exactly understand what you did in c) ⇒ a)

Hint for b) ⇒ c)
Take ##A \subset S##, and set ##B=f^{-1}(f(A)) \setminus A##. Use b) to prove that ##B= \varnothing##.

Hint for c) ⇒ a)
Take ##x\in S## and apply c) to ##A=\{x\}##.
 
  • Like
Likes Incand
Cheers! The hints really helped! Think I got them now.

b) ##\Longrightarrow## c)
Let ##A \subseteq S## and set ##B = f^{-1}(f(A))\backslash A## then ##A \cap B = \varnothing##. Using b)
##f(\varnothing ) = f(A \cap B) = f(A)\cap f(B), \; \; \forall A \subseteq S##. Hence
##f(\varnothing ) =f(B)## but ##f(\varnothing) = \varnothing## and ##f(B) = \varnothing## only when ##B = \varnothing## so ##B=\varnothing##.
This gives us that ##f^{-1}(f(A)) = A, \; \; \forall A\subseteq S##.

c) ##\Longrightarrow## a)
Take ##x\in S## and take ##A = \{x\}## then by c) ##f^{-1}(f(A)) = A= \{x\}##. Since the inverse image of ##f(A)## has only one element there is only one ##x## satisfying ##z=f(x)## for each ##x\in S##. That means if ##x_1 \ne x_2## ##f(x_1) \ne f(x_2)## and hence ##f## is 1-1.
 
  • Like
Likes Samy_A
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top