alicexigao
- 1
- 0
For my current research, I need to prove the following:
\int_0^1 \frac{dC(q(x) + k'(q'(x) - q(x)))}{dk'}\,dk' = \int_0^1 \int_L^U p(q(x) + k(q'(x) - q(x)))(q'(x)-q(x)) dx dk
where C(q(x)) = \int_0^1 \int_L^U p(kq(x)) q(x)\,dx\,dk
Here's what I've tried using the definition of functional derivative:
<br /> \frac{\partial C(q(x))}{\partial q(x)} <br />
<br /> = \lim_{\delta q(x) \rightarrow 0} \frac{C[q(x) + \delta q(x)] - C[q(x)]}{\delta q(x)} <br />
<br /> = \int_L^U \int_0^1 \frac{\partial p(kq(x))}{\partial q(x)}q(x) + p(kq(x)) dk dx<br />
My guess is that
<br /> \frac{dC(q(x) + k'(q'(x) - q(x)))}{dk'} = \frac{\partial C(q(x) + k'(q'(x) - q(x)))}{\partial (q(x) + k'(q'(x) - q(x)))} \frac{d(q(x) + k'(q'(x) - q(x)))}{dk'}<br />
but I'm not sure what to do next. Any help will be greatly appreciated!
Thank you very much!
Alice
\int_0^1 \frac{dC(q(x) + k'(q'(x) - q(x)))}{dk'}\,dk' = \int_0^1 \int_L^U p(q(x) + k(q'(x) - q(x)))(q'(x)-q(x)) dx dk
where C(q(x)) = \int_0^1 \int_L^U p(kq(x)) q(x)\,dx\,dk
Here's what I've tried using the definition of functional derivative:
<br /> \frac{\partial C(q(x))}{\partial q(x)} <br />
<br /> = \lim_{\delta q(x) \rightarrow 0} \frac{C[q(x) + \delta q(x)] - C[q(x)]}{\delta q(x)} <br />
<br /> = \int_L^U \int_0^1 \frac{\partial p(kq(x))}{\partial q(x)}q(x) + p(kq(x)) dk dx<br />
My guess is that
<br /> \frac{dC(q(x) + k'(q'(x) - q(x)))}{dk'} = \frac{\partial C(q(x) + k'(q'(x) - q(x)))}{\partial (q(x) + k'(q'(x) - q(x)))} \frac{d(q(x) + k'(q'(x) - q(x)))}{dk'}<br />
but I'm not sure what to do next. Any help will be greatly appreciated!
Thank you very much!
Alice
Last edited: