Proving H is Normal in Finite Group with One Subgroup

  • Thread starter Thread starter joecoz88
  • Start date Start date
  • Tags Tags
    Normal
joecoz88
Messages
14
Reaction score
0

Homework Statement



If G is a finite group that has exactly one subgroup H of a given order, then H is normal.

Homework Equations



N/A

The Attempt at a Solution



I cannot figure out what makes a subgroup H special if it is the only one of a given order...
 
Physics news on Phys.org
Pick a g in G. What is the order of g-1Hg?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top